FPGA的電源管理
為FPGA應用設計優(yōu)秀電源管理解決方案不是一項簡單的任務,相關技術討論有很多。本文一方面旨在找到正確解決方案并選擇最合適的電源管理產(chǎn)品,另一方面則是如何優(yōu)化實際解決方案以用于FPGA。
找到合適的電源解決方案
尋找為FPGA供電的最佳解決方案并不簡單。許多供應商以適合為FPGA供電的名義推銷某些產(chǎn)品。為FPGA供電的DC-DC轉(zhuǎn)換器選擇有何特定要求?其實并不多。一般而言,所有電源轉(zhuǎn)換器都可用來為FPGA供電。推薦某些產(chǎn)品通常是基于以下事實:許多FPGA應用需要多個電壓軌,例如用于FPGA內(nèi)核和I/O,還可能需要額外的電壓軌來用于DDR存儲器。將多個DC-DC轉(zhuǎn)換器全部集成到單個穩(wěn)壓器芯片中的PMIC(電源管理集成電路)常常是首選。
一種為特定FPGA尋找優(yōu)秀供電解決方案的流行方法是使用許多FPGA供應商都提供的已有電源管理參考設計。這對于優(yōu)化設計來說是一個很好的入門方式。但此類設計往往需要修改,因為FPGA系統(tǒng)通常需要額外的電壓軌和負載,這些也需要供電。在參考設計上增加一些東西常常也是必要的。還有一件事需要考慮,那就是FPGA的輸入電源不是固定的。輸入電壓在很大程度上取決于實際的邏輯電平以及FPGA所實現(xiàn)的設計。完成對電源管理參考設計的修改之后,它看起來將與最初的參考設計不同?赡苡腥藭q稱,最好的解決方案是根本不用電源管理參考設計,而是直接將所需的電壓軌和電流輸入到電源管理選型與優(yōu)化工具中,例如ADI公司的LTpowerCAD等。
圖1.通過LTpowerCAD工具選擇合適的DC-DC轉(zhuǎn)換器來為FPGA供電。
LTpowerCAD可用來為各個電壓軌提供電源解決方案。它還提供一系列參考設計,以讓設計人員快速入門。LTpowerCAD可以從ADI公司網(wǎng)站免費下載。
一旦選擇了電源架構和各個電壓轉(zhuǎn)換器,就需要選擇合適的無源元件來設計電源。做這件事時,需要牢記FPGA的特殊負載要求。
它們分別是:
► 各項電流需求
► 電壓軌時序控制
► 電壓軌單調(diào)上升
► 快速電源瞬變
► 電壓精度
各項電流需求
FPGA的實際電流消耗在很大程度上取決于使用情況。不同的時鐘和不同的FPGA內(nèi)容需要不同的功率。因此,在FPGA系統(tǒng)的設計過程中,典型FPGA設計的最終電源規(guī)格必然會發(fā)生變化。FPGA制造商提供的功率估算工具有助于計算解決方案所需的功率等級。在構建實際硬件之前,獲得這些信息會非常有用。但是,為了利用此類功率估算工具獲得有意義的結果,F(xiàn)PGA的設計必須最終確定,或者至少接近最終完成。
通常情況下,工程師設計電源時考慮的是最大FPGA電流。如果最終發(fā)現(xiàn)實際FPGA設計需要的功率更少,設計人員就會縮減電源。
電壓軌時序控制
許多FPGA要求不同電源電壓軌以特定順序上電。內(nèi)核電壓的供應往往需要早于I/O電壓的供應,否則一些FPGA會被損壞。為了避免這種情況,電源需要按正確的順序上電。使用標準DC-DC轉(zhuǎn)換器上的使能引腳,可以輕松實現(xiàn)簡單的上電時序控制。然而,器件關斷通常也需要時序控制。僅執(zhí)行使能引腳時序控制,很難取得良好的結果。更好的解決辦法是使用具有高級集成時序控制功能的PMIC,例如ADP5014。圖2中用紅色表示的特殊電路模塊支持調(diào)整上電和關斷時序。
圖3顯示了利用此器件實現(xiàn)的時序控制。通過ADP5014上的延遲(DL)引腳可以輕松調(diào)整上電和關斷時序的時間延遲。
如果使用多個單獨的電源,增加時序控制芯片便可實現(xiàn)所需的上電/關斷順序。一個例子是LTC2924,它既能控制DC-DC轉(zhuǎn)換器的使能引腳來打開和關閉電源,也能驅(qū)動高端N溝道MOSFET來將FPGA與某個電壓軌連接和斷開。
圖2.ADP5014 PMIC集成了對靈活控制上電/關斷時序的支持。
圖3.多個FPGA電源電壓的啟動和關斷順序。
電壓軌單調(diào)上升
除了電壓時序之外,啟動過程中還可能要求電壓單調(diào)上升。這意味著電壓僅線性上升,如圖4中的電壓A所示。此圖中的電壓B是電壓非單調(diào)上升的例子。在啟動過程中,當電壓上升到一定電平時負載開始拉大電流,就會發(fā)生這種情況。防止這種情況的一種辦法是延長電源的軟啟動時間,并選擇能夠快速提供大量電流的電源轉(zhuǎn)換器。
圖4.電壓A單調(diào)上升,電壓B非單調(diào)上升。
快速電源瞬變
FPGA的另一個特點是它會非常迅速地開始抽取大量電流。這會在電源上造成很高的負載瞬變。出于這個原因,許多FPGA需要大量的輸入電壓去耦。陶瓷電容非?拷赜迷谄骷腣CORE和GND引腳之間。高達1 mF的值非常常見。如此高電容有助于降低對電源提供非常高峰值電流的需求。但是,許多開關穩(wěn)壓器和LDO規(guī)定了最大輸出電容。FPGA的輸入電容要求可能超過電源允許的最大輸出電容。
電源不喜歡非常大的輸出電容,因為在啟動期間,開關穩(wěn)壓器的輸出電容看來像是短路的。對此問題有一個解決辦法。較長的軟啟動時間可以讓大電容組上的電壓穩(wěn)定地升高,電源不會進入短路限流模式。
圖5.很多FPGA的輸入電容要求。
一些電源轉(zhuǎn)換器不喜歡過大輸出電容的另一個原因是該電容值會成為調(diào)節(jié)環(huán)路的一部分。集成環(huán)路補償?shù)霓D(zhuǎn)換器不允許輸出電容過大,以防止穩(wěn)壓器的環(huán)路不穩(wěn)定。在高端反饋電阻上使用前饋電容常?梢杂绊懣刂骗h(huán)路,如圖6所示。
圖6.當沒有環(huán)路補償引腳可用時,利用前饋電容可以調(diào)節(jié)控制環(huán)路。
針對電源的負載瞬變和啟動行為,開發(fā)工具鏈(包括LTpowerCAD,尤其是LTspice)非常有幫助。該工具可以很好的建模和仿真,從而有效實現(xiàn)FPGA的大輸入電容與電源的輸出電容的去耦。圖6展示了這一概念。雖然POL(負載端)電源的位置往往靠近負載,但在電源和FPGA輸入電容之間常常存在一些PCB走線。當電路板上有多個彼此相鄰的FPGA輸入電容時,離電源最遠的那些電容對電源傳遞函數(shù)的影響較小,因為它們之間不僅存在一些電阻,還存在寄生走線電感。這些寄生電感允許FPGA的輸入電容大于電源輸出電容的最大限值,即使所有電容都連接到電路板上的同一節(jié)點也無妨。在LTspice中,可以將寄生走線電感添加到原理圖中,并且可以模擬這些影響。當電路建模中包含足夠的寄生元件時,仿真結果接近實際結果。
圖7.電源輸出電容與FPGA輸入電容之間的寄生去耦。
電壓精度
FPGA電源的電壓精度通常要求非常高。3%的變化容差帶是相當常見的。例如,為使0.85 V的Stratix V內(nèi)核電壓軌保持在3%的電壓精度窗口內(nèi),要求全部容差帶僅為25.5 mV。這個小窗口包括負載瞬變后的電壓變化以及直流精度。同樣,對于此類嚴格要求,包括LTpowerCAD和LTspice在內(nèi)的可用電源工具鏈在電源設計過程中非常重要。
最后一點建議是關于FPGA輸入電容的選擇。為了快速提供大電流,通常選擇陶瓷電容。此類電容很適合這種用途,但需要小心選擇,使其真實電容值不隨直流偏置電壓而下降。一些陶瓷電容,尤其是Y5U型,當直流偏置電壓接近其最大額定直流電壓時,其真實電容值會降低到只有標稱值的20%。
Frederik Dostal [frederik.dostal @analog.com]曾就讀于德國埃爾朗根-紐倫堡大學微電子學專業(yè)。他于2001年開始工作,涉足電源管理業(yè)務,曾擔任多種應用工程師職位,并在亞利桑那州鳳凰城工作了4年,負責開關模式電源。Frederik于2009年加入ADI公司,擔任歐洲分公司的電源管理技術專家。
熱點產(chǎn)品more
新品more
活動more
ADI 技術視頻more
LT3094: 在 1MHz 具 0.8μVRMS 噪聲的負 LDO
LT3094 是一款高性能低壓差負線性穩(wěn)壓器,其具有 ADI 的超低噪聲和超高 PSRR 架構,適合為噪聲敏感型應用供電。該器件可通過并聯(lián)以增加輸出電流和在 PCB 上散播熱量。
LTM8002:高效率、超低 EMI 降壓型電源 μModule
LTM8002 是一款 40VIN、2.5A 降壓型μModule® 穩(wěn)壓器。它內(nèi)置了開關控制器、電源開關、電感器和所有的支持性組件。該器件支持 3.4V 至 40V 的輸入電壓范圍,和 0.97V 至 18V 的輸出電壓。
具電源系統(tǒng)管理功能的超薄型 μModule 穩(wěn)壓器
LTM4686 是一款雙通道 10A 或單通道 20A 超薄型降壓 μModule 穩(wěn)壓器。該器件1.82mm 的高度使之可放置到非常靠近負載 (FPGA 或 ASIC) 的地方,從而共用一個散熱器。其 PMBus 接口使用戶能改變主要的電源參數(shù)。