高速放大器測試需要足夠多的數(shù)學(xué)知識(shí)來正確使用巴倫

在大多數(shù)實(shí)驗(yàn)室環(huán)境中,信號(hào)發(fā)生器、頻譜分析儀等設(shè)備是單端儀器,用于測量高速差分放大器驅(qū)動(dòng)器和轉(zhuǎn)換器的失真。因此,測量放大器驅(qū)動(dòng)器的偶數(shù)階失真(例如二次諧波失真HD2,甚至階偶數(shù)階交調(diào)失真或IMD2)需要額外的器件,如巴倫和衰減器等,作為整體測試設(shè)置的一部分,以將單端測試儀器連接到放大器驅(qū)動(dòng)器的差分輸入和輸出。本文通過不匹配信號(hào)的數(shù)學(xué)知識(shí)揭示了相位不平衡的重要性,并說明了相位不平衡如何導(dǎo)致偶數(shù)階產(chǎn)物的增加(即變得更糟糕!)。本文還將展示了幾種不同高性能巴倫和衰減器的權(quán)衡如何影響被測放大器的性能指標(biāo)(即HD2和IMD2)。

數(shù)學(xué)背景 = 耶!

測試具有差分輸入的高速器件(如模數(shù)轉(zhuǎn)換器、放大器、混頻器、巴倫等)時(shí),幅度和相位不平衡是需要理解的重要指標(biāo)。

當(dāng)模擬信號(hào)鏈設(shè)計(jì)使用500 MHz及以上的頻率時(shí),必須非常小心,因?yàn)樗衅骷?無論有源還是無源)在頻率范圍內(nèi)都有某種固有不平衡。500 MHz并不是一個(gè)奇妙的頻率點(diǎn),只是基于經(jīng)驗(yàn),這是大多數(shù)器件開始偏離相位平衡的地方。根據(jù)器件不同,此頻率可能比這低得多或高得多。

我們來仔細(xì)看看下面的簡單數(shù)學(xué)模型:

1.jpg

 

圖1.具有兩個(gè)信號(hào)輸入的數(shù)學(xué)模型。

考慮ADC、放大器、巴倫等或任何將信號(hào)從單端轉(zhuǎn)換為差分(或反之)的器件的輸入x(t)。信號(hào)對(duì)x1(t)和x2(t)是正弦信號(hào),因此差分輸入信號(hào)具有如下形式:

2.jpg

 

如果不是這樣,就因?yàn)檫@些器件的不平衡,ADC的偶數(shù)階失真測試結(jié)果在工作頻率范圍內(nèi)可能會(huì)發(fā)生顯著變化。

ADC或任何有源器件可以簡單地建模為對(duì)稱三階傳遞函數(shù):

3.jpg

 

那么:

4.jpg

 

理想情況下沒有不平衡,上述簡單系統(tǒng)的傳遞函數(shù)可以建模如下:

x1(t)和x2(t)完全平衡時(shí),這些信號(hào)具有相同幅度(k1= k2= k),并且恰好180°相差(φ = 0°)。

5.jpg

6.jpg

 

對(duì)冪運(yùn)用三角恒等式并收集頻率等信息,我們得到:

7.jpg

 

這是差分電路的常見結(jié)果:理想信號(hào)的偶次諧波抵消,而奇次諧波沒有抵消。

現(xiàn)在假設(shè)兩個(gè)輸入信號(hào)的幅度不平衡,但沒有相位不平衡。這種情況下,k1 ≠ k2,φ = 0。

8.jpg

 

把公式7代入公式3,并再次運(yùn)用冪的三角恒等式。

9.jpg

 

我們看到公式8中,二次諧波與幅度k1和k2的平方之差成正比,簡單來說即:

10.jpg

 

現(xiàn)在,假設(shè)兩個(gè)輸入信號(hào)之間相位不平衡,沒有幅度不平衡。那么,k1 = k2,φ ≠ 0。

11.jpg

 

把公式10代入公式3并簡化——試試看,您能行的!

12.jpg

 

從公式11可知,二次諧波幅值與幅度k的平方成正比。

13.jpg

 

如果回過頭比較公式9和公式12,并且假設(shè)三角恒等式運(yùn)用正確,那么可以得出如下結(jié)論:二次諧波受相位不平衡影響比受幅度不平衡影響更嚴(yán)重。原因如下:對(duì)于相位不平衡,二次諧波與k1的平方成正比;再看公式12,對(duì)于幅度不平衡,二次諧波與k1和k2的平方差成正比,或看公式9。由于k1和k2大致相等,因此這種差異通常很小,特別是如果將其與平方數(shù)進(jìn)行比較!

測試高速放大器

既然我們清除了障礙,接下來看一個(gè)使用案例,如圖2所示。這是一幅框圖,顯示了差分放大器實(shí)驗(yàn)中常用的HD2失真測試設(shè)置。

14.jpg

 

圖2.高速放大器HD2測試設(shè)置

3.

乍一看相當(dāng)簡單,但魔鬼隱藏在細(xì)節(jié)中。圖3顯示了一組HD2測試結(jié)果,其系使用本框圖中的所有器件、差分放大器、巴倫、衰減器等得到的。這些測試證明:僅僅用不同方式翻轉(zhuǎn)巴倫方向所導(dǎo)致的細(xì)微相位不匹配,便能在HD2掃頻中產(chǎn)生不同結(jié)果。此設(shè)置中有兩個(gè)巴倫,因此通過顛倒設(shè)置一側(cè)或兩側(cè)的連接可以創(chuàng)建四種可能的場景。結(jié)果如圖3所示。

15.jpg

 

圖3.使用供應(yīng)商1A巴倫和不同巴倫方向測試HD2性能。

圖3揭示的HD2失真曲線方差量證明,需要進(jìn)一步考察巴倫的性能,特別是相位和幅度不平衡。以下兩幅圖顯示了不同制造商的幾款巴倫的相位和幅度不平衡。使用網(wǎng)絡(luò)分析儀來測量不平衡。

圖4和圖5中的紅色曲線對(duì)應(yīng)于圖3中用于采集HD2失真數(shù)據(jù)的實(shí)際巴倫。供應(yīng)商1A的這款巴倫具有最高帶寬和良好的通帶平坦度,但在同樣的10 GHz頻率測試帶上,相位不平衡比其他巴倫要差。

16.jpg

 

圖4.各種巴倫的相位不平衡

17.jpg

 

圖5.各種巴倫的幅度不平衡

接下來的兩幅圖代表使用最佳巴倫對(duì)HD2失真重新測試的結(jié)果,這些巴倫分別來自供應(yīng)商1B和供應(yīng)商2B,具有最低的相位不平衡,如圖6和圖7所示。注意,如果有更好的不平衡性能,則HD2失真方差會(huì)相應(yīng)降低,如圖7所示。

18.jpg

 

圖6.使用供應(yīng)商1B巴倫和不同巴倫方向重新測試HD2性能。

19.jpg

 

圖7.使用供應(yīng)商2B巴倫和不同巴倫方向重新測試HD2性能。

為了進(jìn)一步說明相位不平衡如何直接影響偶數(shù)階失真性能,圖8顯示了與前一HD2圖相同條件下的HD3失真。請(qǐng)注意,所有四條曲線大致相同,符合預(yù)期。因此,如前面的數(shù)學(xué)推導(dǎo)示例所證明的,HD3失真對(duì)信號(hào)鏈中的不平衡不太敏感。

20.jpg

 

圖8.使用供應(yīng)商2B巴倫和不同巴倫方向測試HD3性能。

到目前為止,應(yīng)假定輸入和輸出連接的衰減器焊盤(如圖2所示)是固定一致的,且在巴倫方向測量期間無變化。下圖圖7所示的相同曲線,僅測試供應(yīng)商2B的巴倫性能,輸入和輸出之間交換衰減器。這就產(chǎn)生另一組(四條)曲線,如圖9中的虛線所示。結(jié)果是我們回到了開始的地方,因?yàn)檫@在測試測量中表現(xiàn)出更多的變化。這進(jìn)一步強(qiáng)調(diào)了差分信號(hào)對(duì)任一側(cè)的少量不匹配在高頻率下影響很大。務(wù)必詳細(xì)記錄測試條件。

21.jpg

 

圖9.僅使用供應(yīng)商2B巴倫以及不同巴倫方向和衰減焊盤交換測試HD2性能。

全部抵消

總之,在GHz區(qū)域開發(fā)全差分信號(hào)鏈時(shí),所有東西都很重要,包括衰減器焊盤、巴倫、電纜、印刷電路板上的走線等。我們已經(jīng)在數(shù)學(xué)上和實(shí)驗(yàn)室中使用高速差分放大器作為測試平臺(tái)證明了這一點(diǎn)。因此,在開始責(zé)備器件或供應(yīng)商之前,請(qǐng)?jiān)赑CB布局和實(shí)驗(yàn)室測試期間特別小心。

最后,您可能會(huì)問自己,多大相位不平衡是可以容忍的?例如,一個(gè)巴倫在x GHz時(shí)相位不平衡為x度,它對(duì)具體器件或系統(tǒng)有何影響?線性度性能是否會(huì)有一定程度的損失或多少dB惡化?

這是一個(gè)很難回答的問題。在理想世界里,如果信號(hào)鏈中的每件東西都完美匹配,那么就不會(huì)有偶數(shù)階失真需要擔(dān)心。其次,如果有一個(gè)經(jīng)驗(yàn)法則或公式來告訴我們每x°的相位不平衡會(huì)帶來x dB的線性度損失(HD2性能降低),豈不美哉。但是,這不可能。為什么?因?yàn)槊總(gè)器件,無論有源、無源還是差分式,都會(huì)有某種固有的相位不匹配。根本沒有辦法在內(nèi)部使IC設(shè)計(jì)實(shí)現(xiàn)完美的平衡,或者切割出長度絕對(duì)一致的電纜。因此,不論這些不匹配有多小,隨著系統(tǒng)使用的頻率越來越高,它們都會(huì)變得更加突出。

總之,當(dāng)使用全差分輸入和輸出時(shí),我們會(huì)盡我們所能做好我們的工作,讓IC布局不匹配保持最小。當(dāng)您在實(shí)驗(yàn)室測試我們的產(chǎn)品時(shí),希望您也這樣做。

ADI 技術(shù)視頻more

LT3094: 在 1MHz 具 0.8μV<sub>RMS</sub> 噪聲的負(fù) LDO

LT3094: 在 1MHz 具 0.8μVRMS 噪聲的負(fù) LDO

LT3094 是一款高性能低壓差負(fù)線性穩(wěn)壓器,其具有 ADI 的超低噪聲和超高 PSRR 架構(gòu),適合為噪聲敏感型應(yīng)用供電。該器件可通過并聯(lián)以增加輸出電流和在 PCB 上散播熱量。

觀看此技術(shù)視頻
LTM8002:高效率、超低 EMI 降壓型電源 μModule

LTM8002:高效率、超低 EMI 降壓型電源 μModule

LTM8002 是一款 40VIN、2.5A 降壓型μModule® 穩(wěn)壓器。它內(nèi)置了開關(guān)控制器、電源開關(guān)、電感器和所有的支持性組件。該器件支持 3.4V 至 40V 的輸入電壓范圍,和 0.97V 至 18V 的輸出電壓。

觀看此技術(shù)視頻
具電源系統(tǒng)管理功能的超薄型 μModule 穩(wěn)壓器

具電源系統(tǒng)管理功能的超薄型 μModule 穩(wěn)壓器

LTM4686 是一款雙通道 10A 或單通道 20A 超薄型降壓 μModule 穩(wěn)壓器。該器件1.82mm 的高度使之可放置到非?拷(fù)載 (FPGA 或 ASIC) 的地方,從而共用一個(gè)散熱器。其 PMBus 接口使用戶能改變主要的電源參數(shù)。

觀看此技術(shù)視頻

電源管理雜志more

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 8 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 4 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

Journal of Power Management (2018 年 1 月刊) 英文版

關(guān)閉ADI官方微信二維碼