循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network, RNN)是一類以序列(sequence)數(shù)據(jù)為輸入,在序列的演進(jìn)方向進(jìn)行遞歸(recursion)且所有節(jié)點(循環(huán)單元)按鏈?zhǔn)竭B接的遞歸神經(jīng)網(wǎng)絡(luò)(recursive neural network)。對循環(huán)神經(jīng)網(wǎng)絡(luò)的研究始于二十世紀(jì)80-90年代,并在二十一世紀(jì)初發(fā)展為深度學(xué)習(xí)(deep learning)算法之一,其中雙向循環(huán)神經(jīng)網(wǎng)絡(luò)(Bidirectional RNN, Bi-RNN)和長短期記憶網(wǎng)絡(luò)(Long Short-Term Memory networks,LSTM)是常見的循環(huán)神經(jīng)網(wǎng)絡(luò)。
前言:人工智能機器學(xué)習(xí)有關(guān)算法內(nèi)容,請參見公眾號“科技優(yōu)化生活”之前相關(guān)文章。人工智能之機器學(xué)習(xí)主要有三大類:1)分類;2)回歸;3)聚類。今天我們重點探討一下循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)算法。