本文中,小編將對基因芯片原理、基因芯片分類予以介紹,如果你想對基因芯片的詳細(xì)情況有所認(rèn)識,或者想要增進對它的了解程度,不妨請看以下內(nèi)容哦。
一、基因芯片原理
基因芯片(gene chip)的原型是80年代中期提出的?;蛐酒臏y序原理是雜交測序方法,即通過與一組已知序列的核酸探針雜交進行核酸序列測定的方法。在一塊基片表面固定了序列已知的八核苷酸的探針。當(dāng)溶液中帶有熒光標(biāo)記的核酸序列TATGCAATCTAG,與基因芯片上對應(yīng)位置的核酸探針產(chǎn)生互補匹配時,通過確定熒光強度最強的探針位置,獲得一組序列完全互補的探針序列。據(jù)此可重組出靶核酸的序列。
它是在基因探針的基礎(chǔ)上研制出的,所謂基因探針只是一段人工合成的堿基序列,在探針上連接一些可檢測的物質(zhì),根據(jù)堿基互補的原理,利用基因探針到基因混合物中識別特定基因。它將大量探針分子固定于支持物上,然后與標(biāo)記的樣品進行雜交,通過檢測雜交信號的強度及分布來進行分析。基因芯片通過應(yīng)用平面微細(xì)加工技術(shù)和超分子自組裝技術(shù),把大量分子檢測單元集成在一個微小的固體基片表面,可同時對大量的核酸和蛋白質(zhì)等生物分子實現(xiàn)高效、快速、低成本的檢測和分析。
由于尚未形成主流技術(shù),生物芯片的形式非常多,以基質(zhì)材料分,有尼龍膜、玻璃片、塑料、硅膠晶片、微型磁珠等;以所檢測的生物信號種類分,有核酸、蛋白質(zhì)、生物組織碎片甚至完整的活細(xì)胞;按工作原理分類,有雜交型、合成型、連接型、親和識別型等。由于生物芯片概念是隨著人類基因組的發(fā)展一起建立起來的,所以至今為止生物信號平行分析最成功的形式是以一種尼龍膜為基質(zhì)的“cDNA陣列”,用于檢測生物樣品中基因表達譜的改變。
二、基因芯片的分類
基因芯片類型較為繁多,可以依據(jù)不同的分類方法進行分類,一般可分為以下幾種:
1、按照載體上所添加DNA種類的不同,基因芯片可分為寡核苷酸芯片和cDNA芯片兩種:寡核苷酸芯片一般以原位合成的方法固定到載體上,具有密集程度高、可合成任意系列的寡核苷酸等優(yōu)點,適用于DNA序列測定、突變檢測、SNP分析等;其缺點是合成寡核苷酸的長度有限,因而特異性較差,而且隨著長度的增加,合成錯誤率增加。寡核苷酸芯片也可通過預(yù)合成點樣制備,但固定率不如cDNA芯片高,寡核苷酸芯片主要用于點突變檢測和測序,也可用作表達譜研究。cDNA芯片是將微量的cDNA片段在玻璃等載體上按矩陣密集排列并固化,其基因點樣密度雖不及原位合成寡核苷酸芯片高,但比用傳統(tǒng)載體的點樣密度要高得多,cDNA芯片最大的優(yōu)點是靶基因檢測特異性非常好,主要用于表達譜研究。
2、按照載體材料分類:載體材料可分為無機材料和有機材料兩種,無機材料有玻璃、硅片、陶瓷等,有機材料由有機膜、凝膠等。膜芯片的介質(zhì)主要采用的是尼龍膜,其陣列密度比較低,用到的探針量較大,檢測的方法主要是用放射性同位素的方法,檢測的結(jié)果是一種單色的結(jié)果。而以玻璃為介質(zhì)的芯片,陣列密度高,所用的探針量少,檢測方法具有多樣性,所得結(jié)果是一種彩色的結(jié)果,與膜芯片相比,結(jié)果分辨率更高一些,分析的靈活性更強。
3、按照點樣方式的不同可以分為原位合成芯片、微矩陣芯片、電定位芯片三種。
經(jīng)由小編的介紹,不知道你對基因芯片是否充滿了興趣?如果你想對基因芯片有更多的了解,不妨嘗試度娘更多信息或者在我們的網(wǎng)站里進行搜索哦。