半導體的發(fā)現(xiàn)實際上可以追溯到很久以前。1833年,英國科學家電子學之父法拉第最先發(fā)現(xiàn)硫化銀的電阻隨著溫度的變化情況不同于一般金屬,一般情況下,金屬的電阻隨溫度升高而增加,但法拉第發(fā)現(xiàn)硫化銀材料的電阻是隨著溫度的上升而降低。這是半導體現(xiàn)象的首次發(fā)現(xiàn)。 不久,1839年法國的貝克萊爾發(fā)現(xiàn)半導體和電解質(zhì)接觸形成的結(jié),在光照下會產(chǎn)生一個電壓,這就是后來人們熟知的光生伏特效應,這是被發(fā)現(xiàn)的半導體的第二個特性。 1873年,英國的史密斯發(fā)現(xiàn)硒晶體材料在光照下電導增加的光電導效應,這是半導體的第三種特性。在1874年,德國的布勞恩觀察到某些硫化物的電導與所加電場的方向有關(guān),即它的導電有方向性,在它兩端加一個正向電壓,它是導通的;如果把電壓極性反過來,它就不導電,這就是半導體的整流效應,也是半導體所特有的第四種特性。同年,舒斯特又發(fā)現(xiàn)了銅與氧化銅的整流效應。半導體的這四個特性,雖在1880年以前就先后被發(fā)現(xiàn)了,但半導體這個名詞大概到1911年才被考尼白格和維斯首次使用。而總結(jié)出半導體的這四個特性一直到1947年12月才由貝爾實驗室完成。 2019年10月,一國際科研團隊稱與傳統(tǒng)霍爾測量中僅獲得3個參數(shù)相比,新技術(shù)在每個測試光強度下最多可獲得7個參數(shù):包括電子和空穴的遷移率;在光下的載荷子密度、重組壽命、電子、空穴和雙極性類型的擴散長度。
半導體在集成電路、消費電子、通信系統(tǒng)、光伏發(fā)電、照明應用、大功率電源轉(zhuǎn)換等領(lǐng)域應用。光伏應用半導體材料光生伏特效應是太陽能電池運行的基本原理?,F(xiàn)階段半導體材料的光伏應用已經(jīng)成為一大熱門 ,是目前世界上增長最快、發(fā)展最好的清潔能源市場。太陽能電池的主要制作材料是半導體材料,判斷太陽能電池的優(yōu)劣主要的標準是光電轉(zhuǎn)化率 ,光電轉(zhuǎn)化率越高 ,說明太陽能電池的工作效率越高。根據(jù)應用的半導體材料的不同 ,太陽能電池分為晶體硅太陽能電池、薄膜電池以及III-V族化合物電池。照明應用LED是建立在半導體晶體管上的半導體發(fā)光二極管 ,采用LED技術(shù)半導體光源體積小,可以實現(xiàn)平面封裝,工作時發(fā)熱量低、節(jié)能高效,產(chǎn)品壽命長、反應速度快,而且綠色環(huán)保無污染,還能開發(fā)成輕薄短小的產(chǎn)品 ,一經(jīng)問世 ,就迅速普及,成為新一代的優(yōu)質(zhì)照明光源,目前已經(jīng)廣泛的運用在我們的生活中。如交通指示燈、電子產(chǎn)品的背光源、城市夜景美化光源、室內(nèi)照明等各個領(lǐng)域 ,都有應用。大功率電源轉(zhuǎn)換交流電和直流電的相互轉(zhuǎn)換對于電器的使用十分重要 ,是對電器的必要保護。這就要用到等電源轉(zhuǎn)換裝置。碳化硅擊穿電壓強度高 ,禁帶寬度寬,熱導性高,因此SiC半導體器件十分適合應用在功率密度和開關(guān)頻率高的場合,電源裝換裝置就是其中之一。碳化硅元件在高溫、高壓、高頻的又一表現(xiàn)使得現(xiàn)在被廣泛使用到深井鉆探,發(fā)電裝置中的逆變器,電氣混動汽車的能量轉(zhuǎn)化器,輕軌列車牽引動力轉(zhuǎn)換等領(lǐng)域。由于SiC本身的優(yōu)勢以及現(xiàn)階段行業(yè)對于輕量化、高轉(zhuǎn)換效率的半導體材料需要,SiC將會取代Si,成為應用最廣泛的半導體材料。
以GaN(氮化鎵)為代表的第三代半導體材料及器件的開發(fā)是新興半導體產(chǎn)業(yè)的核心和基礎(chǔ),其研究開發(fā)呈現(xiàn)出日新月異的發(fā)展勢態(tài)。GaN基光電器件中,藍色發(fā)光二極管LED率先實現(xiàn)商品化生產(chǎn)成功開發(fā)藍光LED和LD之后,科研方向轉(zhuǎn)移到GaN紫外光探測器上GaN材料在微波功率方面也有相當大的應用市場。氮化鎵半導體開關(guān)被譽為半導體芯片設(shè)計上一個新的里程碑。美國佛羅里達大學的科學家已經(jīng)開發(fā)出一種可用于制造新型電子開關(guān)的重要器件,這種電子開關(guān)可以提供平穩(wěn)、無間斷電源。 [9] 新型半導體材料在工業(yè)方面的應用越來越多。新型半導體材料表現(xiàn)為其結(jié)構(gòu)穩(wěn)定,擁有卓越的電學特性,而且成本低廉,可被用于制造現(xiàn)代電子設(shè)備中廣泛使用,我國與其他國家相比在這方面還有著很大一部分的差距,通常會表現(xiàn)在對一些基本儀器的制作和加工上,近幾年來,國家很多的部門已經(jīng)針對我國相對于其他國家存在的弱勢,這一方面統(tǒng)一的組織了各個方面的群體,對其進行有效的領(lǐng)導,然后共同努力去研制更加高水平的半導體材料。這樣才能夠在很大程度上適應我國工業(yè)化的進步和發(fā)展,為我國社會進步提供更強大的動力。首先需要進一步對超晶格量子阱材料進行研發(fā),目前我國半導體材料在這方面的發(fā)展背景來看,應該在很大程度上去提高超高亮度,紅綠藍光材料以及光通信材料,在未來的發(fā)展的主要研究方向上,同時要根據(jù)市場上,更新一代的電子器件以及電路等要求進行強化,將這些光電子結(jié)構(gòu)的材料,在未來生產(chǎn)過程中的需求進行仔細的分析和探討,然后去滿足未來世界半導體發(fā)展的方向,我們需要選擇更加優(yōu)化的布點,然后做好相關(guān)的開發(fā)和研究工作,這樣將各種研發(fā)機構(gòu)與企業(yè)之間建立更好的溝通機制就可以在很大程度上實現(xiàn)高溫半導體材料,更深一步的開發(fā)和利用。