當前位置:首頁 > 電源 > 電源電路
[導讀]開關電源中的振鈴會產生輻射和傳導噪聲,造成電路抖動和過度耗散,并且容易使組件過載。在音頻、處理器電源和任何需要電磁干擾 (EMI) 認證的設計等應用中,振鈴是一個主要問題。

開關電源中的振鈴會產生輻射和傳導噪聲,造成電路抖動和過度耗散,并且容易使組件過載。在音頻、處理器電源和任何需要電磁干擾 (EMI) 認證的設計等應用中,振鈴是一個主要問題。

通常,我們可以通過添加一個簡單的電阻電容 (RC) 緩沖器來“抑制振鈴”來控制電路。電源開關的電阻電容 (RC) 緩沖器設計電源開關的電阻電容RC緩沖器設計電源開關是每個電源轉換器的核心其運作狀況會直接決定產品的可靠度與效率為了增強電源轉換器切換電路的效能電源開關上設有緩沖器以抑制電壓尖波并且降低開關開啟時電路電感所產生的振鈴正確設計緩沖器能提高可靠度效率并且降低EMI在眾多類型緩沖器中電阻電容RC緩沖器是最常用的緩沖器電路。在這篇文章中,我將概述一個七步程序,可以幫助我們在選擇緩沖值時消除猜測。

在電感和電容形成電感-電容 (LC) 回路的任何開關轉換器中都可能發(fā)生振鈴。電感可能來自元件引線、印刷電路板走線和變壓器泄漏,而電容可能來自非線性元件,例如整流器和繞組間變壓器電容。

振鈴頻率和幅度通常是未知的,因為大多數(shù)電路寄生效應通常是未知的。發(fā)生過度振鈴的兩個常見位置(至少在反激式轉換器等轉換器中)位于整流二極管和開關 FET 兩端。減少這種振鈴的一種簡單解決方案是使用串聯(lián) RC 電路對其進行阻尼或“緩沖”,通常直接放置在整流器或 FET 兩端。

1 中所示的七步程序使用一種通用方法來改變振鈴的諧振頻率來計算電路的寄生電容 (C o ) 和電感 (L)。一旦知道了這些,就可以計算緩沖電容器 ( C snub ) 和電阻器 ( R snub )。我采用了圖 1 和圖 2 中的示例波形,其中 RC 緩沖器與9Vdc-57Vdc 輸入、56V/20W 隔離反激參考設計中的整流器并聯(lián),但如果在 FET 上使用,過程相同。 

包含開關的輸出電容和雜散電容Lp含有PCB布線的寄生電感和MOSFET引線電感來自電源元件的寄生電感和電容會形成濾波器在發(fā)生關閉暫態(tài)后立即產生共振因此會將過多電壓振鈴疊加到元件上,為了抑制峰值電壓會在開關上采用典型RC緩沖器。電阻值必須接近需減幅的寄生共振阻抗值緩沖器電容必須大於共振電路的電容但也必須低至能將電阻的功率耗散維持在最小的程度電阻電容緩沖器的配置。

電阻電容緩沖器的配置圖有一個快速的RC緩沖器設計方法,可用於較不注重功率耗散的應用。憑過往經驗選擇等於開關輸出電容加上預估安裝電容之總和兩倍的緩沖器電容Csnub選擇緩沖器電阻Rsnub使得Rsnub在指定切換頻率fs下的功率耗散。可依此估計若此簡易且實際的設計不會明顯限制峰值電壓即可套用最佳化程序RC緩沖器最佳化在注重功率耗散的情況下,則需使用更顯著最佳化的設計方式。

首先,需測量MOSFET開關節(jié)點SW在關閉時的振鈴頻率Fring,MOSFET上焊接100pF低ESR薄膜電容提高電容,直到振鈴頻率達到初始測量值的一半。現(xiàn)在由於振鈴頻率與電路的電感和電容乘積的平方根成反比,開關的輸出電容總值增加的電容加上原本的寄生電容增加四倍,因此寄生電容Cp則為外部附加電容值的三分之一現(xiàn)在,即可使用下列方程式求得寄生電感Lp求得寄生電感Lp和寄生電容量Cp后,即可依據(jù)下列計算方式選擇緩沖器電阻Rsnub和電容Csunb若有需要可進一步微調緩沖器電阻,以降低振鈴Rsunb在指定切換頻率fs下的功率耗散,透過這些計算值即可完成電源供應器開關緩沖器的設計。



 

1:未抑制的整流器振鈴(頂部)和頻移振鈴(底部)

 

2 顯示了計算值的尖峰減少和阻尼效果。我們可以通過改變C緩沖 值來調高或調低振鈴。較大的C snub 值會進一步降低電壓尖峰幅度,但會增加R snub的功率損耗。

或者,我們可以通過降低C snub來降低R snub的功耗,但振鈴會增加。我們必須權衡可接受的電壓環(huán)幅度和 R緩沖 損耗之間的權衡。

 

開關轉換器中的無阻尼振鈴會產生過多的 EMI 和過應力組件。

正確計算的 RC 緩沖器有助于解決這些問題。我希望你會發(fā)現(xiàn)我的七步程序很容易遵循,并且是一個很好的起點,可以幫助你消除振鈴。 



本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉