當前位置:首頁 > 智能硬件 > 智能硬件
[導(dǎo)讀]在這篇文章中,小編將對機器學習的相關(guān)內(nèi)容和情況加以介紹以幫助大家增進對它的了解程度,和小編一起來閱讀以下內(nèi)容吧。

在這篇文章中,小編將對機器學習的相關(guān)內(nèi)容和情況加以介紹以幫助大家增進對它的了解程度,和小編一起來閱讀以下內(nèi)容吧。

一、機器學習、深度學習3大本質(zhì)區(qū)別

1、數(shù)據(jù)相關(guān)性

深度學習與傳統(tǒng)機器學習最重要的區(qū)別是,隨著數(shù)據(jù)量的增加,其性能也隨之提高。當數(shù)據(jù)很小的時候,深度學習算法并不能很好地執(zhí)行,這是因為深度學習算法需要大量的數(shù)據(jù)才能完全理解它。

隨著數(shù)據(jù)量的增大,深度學習的性能會越來越好,而傳統(tǒng)機器學習方法性能表現(xiàn)卻趨于平緩;但傳統(tǒng)的機器學習算法在數(shù)據(jù)量較小的情況下,比深度學習有著更好的表現(xiàn)。

2、硬件依賴性

深度學習算法在很大程度上依賴于高端機器,而傳統(tǒng)的機器學習算法可以在低端機器上工作。這是因為深度學習算法對GPU有較高的要求,GPU是其工作的一個組成部分。因為深度學習算法要固有地執(zhí)行大量的矩陣乘法運,而使用GPU可以有效地優(yōu)化這些操作,這就免不了對GPU的依賴。而相比之下,機器學習算法對硬件配置沒有很高的要求。

3、特征工程

特征工程是將領(lǐng)域知識應(yīng)用到特征抽取的創(chuàng)建過程,以降低數(shù)據(jù)的復(fù)雜性為目的。但這一過程在訓練時間和如何提取特征方面十分地困難。

在機器學習中,大多數(shù)應(yīng)用的特征需要由專家識別,然后根據(jù)域和數(shù)據(jù)類型手工編碼。

例如,特征可以是像素值、形狀、紋理、位置和方向,大多數(shù)機器學習算法的性能取決于特征識別和提取的準確程度。

而深度學習算法則試圖從數(shù)據(jù)中學習更高級的特性。這是深度學習一個非常獨特的部分,也是有別于傳統(tǒng)機器學習的一部分。因此,深度學習減少了為每個問題開發(fā)新的特征抽取的任務(wù),而是像卷積神經(jīng)網(wǎng)絡(luò)(CNN)這樣嘗試學習低層次的特征,如:早期層次的邊緣和線條,然后是人臉的一部分,最后才是人臉的高層次表示。這樣的方式相較于機器學習,在訓練時間和成本上有較高的提升。

二、機器學習數(shù)據(jù)偏差

樣本偏差:當數(shù)據(jù)集不能反映模型將在其中運行的環(huán)境的實際情況時,就會發(fā)生樣本偏差。這樣的一個例子是某些主要在白人圖像上訓練的面部識別系統(tǒng)。這些模型對婦女和不同種族的人的準確度要低得多。此偏差的另一個名稱是選擇偏差。

排除偏差:排除偏差在數(shù)據(jù)預(yù)處理階段最常見。通常,這是刪除不重要的有價值數(shù)據(jù)的情況。但是,由于某些信息的系統(tǒng)排除,它也可能發(fā)生。例如,假設(shè)你有一個在美國和加拿大的客戶銷售數(shù)據(jù)集。98%的客戶來自美國,因此你選擇刪除不相關(guān)的位置數(shù)據(jù)。但是,這意味著你的模型將不會因為加拿大客戶的消費增加兩倍多這一事實而受到影響。

測量偏差:當為訓練而收集的數(shù)據(jù)與現(xiàn)實世界中收集的數(shù)據(jù)不同時,或者當錯誤的測量結(jié)果導(dǎo)致數(shù)據(jù)失真時,就會發(fā)生這種偏差。這種偏差的一個很好的例子出現(xiàn)在圖像識別數(shù)據(jù)集中,其中訓練數(shù)據(jù)是用一種類型的照相機收集的,而生產(chǎn)數(shù)據(jù)是用另一種照相機收集的。在項目的數(shù)據(jù)標記階段,由于注釋不一致也會導(dǎo)致測量偏差。

召回偏差:這是一種測量偏差,在項目的數(shù)據(jù)標記階段很常見。當你不一致地標記相似類型的數(shù)據(jù)時,就會產(chǎn)生召回偏差。這導(dǎo)致較低的精度。例如,假設(shè)你有一個團隊將電話的圖像標記為損壞,部分損壞或未損壞。如果有人將一張圖像標記為已損壞,但將相似的圖像標記為部分已損壞,則你的數(shù)據(jù)將不一致。

觀察者偏差:也稱為確認偏差,觀察者偏差是看到你期望在數(shù)據(jù)中看到或想要看到的結(jié)果的效果。當研究人員在有意識或無意識的情況下對自己的研究有主觀想法進入項目時,可能會發(fā)生這種情況。當標簽制作者讓主觀思想控制他們的標簽制作習慣,從而導(dǎo)致數(shù)據(jù)不準確時,你也可以看到這一點。

以上就是小編這次想要和大家分享的有關(guān)機器學習的內(nèi)容,希望大家對本次分享的內(nèi)容已經(jīng)具有一定的了解。如果您想要看不同類別的文章,可以在網(wǎng)頁頂部選擇相應(yīng)的頻道哦。

聲明:該篇文章為本站原創(chuàng),未經(jīng)授權(quán)不予轉(zhuǎn)載,侵權(quán)必究。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉