當(dāng)前位置:首頁(yè) > 智能硬件 > 人工智能AI
[導(dǎo)讀]1980年機(jī)器學(xué)習(xí)作為一支獨(dú)立的力量登上了歷史舞臺(tái)。在這之后的10年里出現(xiàn)了一些重要的方法和理論,典型的代表是:分類與回歸樹(CART,1984)、反向傳播算法(1986)、卷積神經(jīng)網(wǎng)絡(luò)(1989)。

1980年機(jī)器學(xué)習(xí)作為一支獨(dú)立的力量登上了歷史舞臺(tái)。在這之后的10年里出現(xiàn)了一些重要的方法和理論,典型的代表是:分類與回歸樹(CART,1984)、反向傳播算法(1986)、卷積神經(jīng)網(wǎng)絡(luò)(1989)。

從1990到2012年,機(jī)器學(xué)習(xí)逐漸走向成熟和應(yīng)用,在這20多年里機(jī)器學(xué)習(xí)的理論和方法得到了完善和充實(shí),可謂是百花齊放的年代。代表性的重要成果有:支持向量機(jī)(SVM,1995)、AdaBoost算法(1997)、循環(huán)神經(jīng)網(wǎng)絡(luò)和LSTM(1997)、流形學(xué)習(xí)(2000)、隨機(jī)森林(2001)。

下面我們對(duì)部分機(jī)器學(xué)習(xí)代表算法進(jìn)行介紹。

?線性回歸

在機(jī)器學(xué)習(xí)中,我們有一組輸入變量(x)用于確定輸出變量(y)。輸入變量和輸出變量之間存在某種關(guān)系,機(jī)器學(xué)習(xí)的目標(biāo)是量化這種關(guān)系。

在線性回歸中,輸入變量(x)和輸出變量(y)之間的關(guān)系表示為y=ax+b的方程。因此,線性回歸的目標(biāo)是找出系數(shù)a和b的值。這里,a是直線的斜率,b是直線的截距。上圖顯示了數(shù)據(jù)集的x和y值,線性回歸的目標(biāo)是擬合最接近大部分點(diǎn)的線。

?分類與回歸樹(CART)

CART是決策樹的一個(gè)實(shí)現(xiàn)方式,由ID3,C4.5演化而來,是許多基于樹的bagging、boosting模型的基礎(chǔ)。CART可用于分類與回歸。

CART是在給定輸入隨機(jī)變量x條件下輸出隨機(jī)變量y的條件概率分布,與ID3和C4.5的決策樹不同的是,ID3和C4.5生成的決策樹可以是多叉的,每個(gè)節(jié)點(diǎn)下的叉數(shù)由該節(jié)點(diǎn)特征的取值種類而定,比如特征年齡分為(青年,中年,老年),那么該節(jié)點(diǎn)下可分為3叉。而CART的假設(shè)決策樹為二叉樹,內(nèi)部結(jié)點(diǎn)特征取值為“是”和“否”。左分支取值為“是”,右分支取值為“否”。這樣的決策樹等價(jià)于遞歸地二分每一個(gè)特征,將輸入空間劃分為有限個(gè)單元,并在這些單元上預(yù)測(cè)概率分布,也就是在輸入給定的條件下輸出條件概率分布。

?隨機(jī)森林(Random Forest)

隨機(jī)森林指的是利用多棵決策樹對(duì)樣本進(jìn)行訓(xùn)練并預(yù)測(cè)的一種分類器。它包含多個(gè)決策樹的分類器,并且其輸出的類別是由個(gè)別樹輸出的類別的眾數(shù)而定。隨機(jī)森林是一種靈活且易于使用的機(jī)器學(xué)習(xí)算法,即便沒有超參數(shù)調(diào)優(yōu),也可以在大多數(shù)情況下得到很好的結(jié)果。隨機(jī)森林也是最常用的算法之一,因?yàn)樗芎?jiǎn)易,既可用于分類也能用于回歸。

其基本的構(gòu)建算法過程如下:

1)用N來表示訓(xùn)練用例(樣本)的個(gè)數(shù),M表示特征數(shù)目。

2)輸入特征數(shù)目m,用于確定決策樹上一個(gè)節(jié)點(diǎn)的決策結(jié)果;其中m應(yīng)遠(yuǎn)小于M。

3)從N個(gè)訓(xùn)練用例(樣本)中以有放回抽樣的方式取樣N次,形成一個(gè)訓(xùn)練集(即bootstrap取樣),并用未抽到的用例(樣本)作預(yù)測(cè),評(píng)估其誤差。

4)對(duì)于每一個(gè)節(jié)點(diǎn),隨機(jī)選擇m個(gè)特征,決策樹上每個(gè)節(jié)點(diǎn)的決定都是基于這些特征確定的。根據(jù)這m個(gè)特征,計(jì)算其最佳的分裂方式。

5)每棵樹都會(huì)完整成長(zhǎng)而不會(huì)剪枝,這有可能在建完一棵正常樹狀分類器后被采用。

?邏輯回歸

邏輯回歸最適合二進(jìn)制分類(y=0或1的數(shù)據(jù)集,其中1表示默認(rèn)類)例如:在預(yù)測(cè)事件是否發(fā)生時(shí),發(fā)生的事件被分類為1(在預(yù)測(cè)人會(huì)生病或不生病,生病的實(shí)例記為1)。它是以其中使用的變換函數(shù)命名的,稱為邏輯函數(shù)h(x)=1/(1+e-x),它是一個(gè)S形曲線。

在邏輯回歸中,輸出是以缺省類別的概率形式出現(xiàn)的。因?yàn)檫@是一個(gè)概率,所以輸出在0-1的范圍內(nèi)。輸出(y值)通過對(duì)數(shù)轉(zhuǎn)換x值,使用對(duì)數(shù)函數(shù)h(x)=1/(1+e-x)來生成,然后應(yīng)用一個(gè)閾值來強(qiáng)制這個(gè)概率進(jìn)入二元分類。

樸素貝葉斯(Naive Bayesian)

樸素貝葉斯法是基于貝葉斯定理與特征條件獨(dú)立假設(shè)的分類方法。樸素貝葉斯分類器基于一個(gè)簡(jiǎn)單的假定:給定目標(biāo)值時(shí)屬性之間相互條件獨(dú)立。

通過以上定理和“樸素”的假定,我們知道:

P(Category|Document)=P(Document|Category)*P(Category)/P(Document)

樸素貝葉斯的基本方法:在統(tǒng)計(jì)數(shù)據(jù)的基礎(chǔ)上,依據(jù)條件概率公式,計(jì)算當(dāng)前特征的樣本屬于某個(gè)分類的概率,選擇最大的概率分類。

對(duì)于給出的待分類項(xiàng),求解在此項(xiàng)出現(xiàn)的條件下各個(gè)類別出現(xiàn)的概率。哪個(gè)概率最大,就認(rèn)為此待分類項(xiàng)屬于哪個(gè)類別。其計(jì)算流程表述如下:

1)x={a1,a2,...,am}為待分類項(xiàng),每個(gè)ai為x的一個(gè)特征屬性

2)有類別集合C={y1,y2,...,yn}

3)計(jì)算P(y1|x),P(y2|x),...,P(yn|x)

4)如果P(yk|x)=max{P(y1|x)

?k最近鄰(kNN)

kNN(k-Nearest Neighbor)的核心思想是如果一個(gè)樣本在特征空間中的k個(gè)最相鄰的樣本中的大多數(shù)屬于某一個(gè)類別,則該樣本也屬于這個(gè)類別,并具有這個(gè)類別上樣本的特性。該方法在確定分類決策上只依據(jù)最鄰近的一個(gè)或者幾個(gè)樣本的類別來決定待分樣本所屬的類別。kNN方法在做類別決策時(shí),只與極少量的相鄰樣本有關(guān)。由于kNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對(duì)于類域的交叉或重疊較多的待分樣本集來說,kNN方法較其他方法更為適合。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉