當(dāng)前位置:首頁(yè) > EDA > 電子設(shè)計(jì)自動(dòng)化
[導(dǎo)讀]隨著醫(yī)療、消費(fèi)電子和工業(yè)市場(chǎng)上的便攜式手持儀器儀表日趨向尺寸更小、重量更輕、電池(或每次充電)續(xù)航時(shí)間更長(zhǎng)、成本更低且通常功能更多方向發(fā)展,低功耗已經(jīng)成為如今電池供電模數(shù)轉(zhuǎn)換器應(yīng)用的一項(xiàng)關(guān)鍵要求。

隨著醫(yī)療、消費(fèi)電子和工業(yè)市場(chǎng)上的便攜式手持儀器儀表日趨向尺寸更小、重量更輕、電池(或每次充電)續(xù)航時(shí)間更長(zhǎng)、成本更低且通常功能更多方向發(fā)展,低功耗已經(jīng)成為如今電池供電模數(shù)轉(zhuǎn)換器應(yīng)用的一項(xiàng)關(guān)鍵要求。即使是在非電池供電的應(yīng)用中,低功耗的好處也不容忽視,因?yàn)榈凸南到y(tǒng)無(wú)需散熱器或風(fēng)扇也能工作,因而尺寸更小、成本更低,而且更加可靠,同時(shí)也“更加綠色環(huán)?!薄4送?,許多設(shè)計(jì)人員在設(shè)計(jì)產(chǎn)品時(shí)都面臨一個(gè)挑戰(zhàn),即在增強(qiáng)產(chǎn)品功能或性能的同時(shí)降低或者至少不得超過(guò)當(dāng)前的功耗預(yù)算。

當(dāng)今市場(chǎng)上品種繁多的ADC則使得選擇符合特定系統(tǒng)要求的最佳器件變得更加困難。如果說(shuō)低功耗是必須的條件,那么除了評(píng)估速度和精度等常見(jiàn)的轉(zhuǎn)換器性能特性之外,還需要考慮更多性能指標(biāo)。了解這些指標(biāo)以及設(shè)計(jì)決策會(huì)對(duì)功耗預(yù)算有何影響,對(duì)于確定系統(tǒng)功耗和電池壽命計(jì)算非常重要。

ADC的平均功耗是轉(zhuǎn)換期間所用功耗、不轉(zhuǎn)換時(shí)所用功耗以及各模式下所用時(shí)間的函數(shù),如等式1所示。

(1)

PAVG= 平均功耗;PCONV= 轉(zhuǎn)換期間的功耗;PSTBY= 待機(jī)或關(guān)斷模式下的功耗;tCONV = 轉(zhuǎn)換所用時(shí)間;tSTBY = 處于待機(jī)或關(guān)斷模式的時(shí)間。

轉(zhuǎn)換期間所用功耗通常遠(yuǎn)大于待機(jī)功耗,因此如果處于待機(jī)模式的時(shí)間增加,平均功耗會(huì)顯著降低。逐次逼近(SAR)型轉(zhuǎn)換器尤其適合此類(lèi)工作模式。

影響系統(tǒng)電源使用情況的最大因素之一是板上電源的選擇。對(duì)于便攜式應(yīng)用,系統(tǒng)通常由3 V紐扣式鋰電池直接供電。這樣就無(wú)需使用低壓差穩(wěn)壓器,從而節(jié)省電能、空間和成本。非電池應(yīng)用也可受益于具有低VDD電源電壓范圍的轉(zhuǎn)換器,因?yàn)楣呐c輸入電壓成正比。為ADC選擇最低可接受VDD將可降低功耗。

針對(duì)低功耗應(yīng)用的所有ADC都具有關(guān)斷或待機(jī)模式,以便在閑置期間節(jié)省電能。ADC可以在單次轉(zhuǎn)換之間關(guān)斷,或者以高吞吐速率突發(fā)執(zhí)行一陣轉(zhuǎn)換,在這些突發(fā)之間關(guān)斷ADC.對(duì)于單通道轉(zhuǎn)換器,工作模式的控制功能可以集成到通信接口,或者在完成一次轉(zhuǎn)換后自動(dòng)進(jìn)行。

將模式控制集成到通信接口的好處是可以減少引腳數(shù)量。這樣可以降低功耗,因?yàn)橐?qū)動(dòng)的輸入更少,同時(shí)漏電流也更小。此外,引腳數(shù)量越少,封裝尺寸也就越小,同時(shí)MCU所需的I/O也越少。無(wú)論采用何種控制方法,只要謹(jǐn)慎使用這些模式都能顯著節(jié)省電能。

顧名思義,關(guān)斷模式會(huì)關(guān)閉部分ADC電路,從而降低功耗。關(guān)斷后電路重新啟動(dòng)轉(zhuǎn)換所需的時(shí)間決定可有效使用此類(lèi)模式的吞吐速率。對(duì)于帶有內(nèi)部基準(zhǔn)電壓源的ADC,重新啟動(dòng)時(shí)間將由基準(zhǔn)電容重新充電所需的時(shí)間決定。采用外部基準(zhǔn)電壓源的模數(shù)轉(zhuǎn)換器需要足夠的時(shí)間在重新啟動(dòng)時(shí)正確跟蹤模擬輸入。

對(duì)于當(dāng)今市場(chǎng)上的所有ADC,功耗均與吞吐速率成正比。功耗由靜態(tài)功耗和動(dòng)態(tài)功耗組成。靜態(tài)功耗是恒定的,動(dòng)態(tài)功耗則和吞吐速率呈線(xiàn)性變化關(guān)系。因此,在滿(mǎn)足應(yīng)用要求的前提下盡可能選擇最低的吞吐速率可以省電。

微型化電子器件的發(fā)展使得便攜式醫(yī)療設(shè)備得到大力發(fā)展,這些設(shè)備通常由電池供電,作為其重要組成部分的模數(shù)轉(zhuǎn)換器(ADC)成為系統(tǒng)功耗主要來(lái)源之一,所以低功耗ADC成為熱門(mén)研究課題。隨著工藝尺寸的減小和電源電壓的降低,數(shù)字電路性能不變、功耗降低,而模擬電路的性能卻被弱化并且逐漸成為功耗主要來(lái)源。逐次逼近型模數(shù)轉(zhuǎn)換器(SARADC)結(jié)構(gòu)簡(jiǎn)單,主要由數(shù)字電路構(gòu)成,成為低功耗系統(tǒng)的選擇之一。  本論文研究并設(shè)計(jì)了適合于醫(yī)療應(yīng)用的低功耗SAR ADC,該SAR ADC也適用于所有低頻中等分辨率低功耗應(yīng)用場(chǎng)合,主要工作及創(chuàng)新點(diǎn)如下:  1.完成了低功耗SAR ADC的設(shè)計(jì),該系統(tǒng)基于TSMC0.18μm混合信號(hào)CMOS工藝,1V電源電壓供電?! ?.完成了SAR ADC系統(tǒng)的后仿真,在58.8 kS/s的采樣率下,功耗3.21μW,最大差分非線(xiàn)性誤差(DNL)和最大積分非線(xiàn)性誤差(INL)分別為0.75LSB和0.9LSB,輸入信號(hào)范圍0~1V,無(wú)雜散動(dòng)態(tài)范圍(SFDR)和信噪失真比(SNDR)分別為73.4dB和60.3996dB(9.737ENOB),品質(zhì)因數(shù)(FoM)為63.9998fJ/Conv-Step?! ?.設(shè)計(jì)了使用單調(diào)開(kāi)關(guān)電容技術(shù)的DAC,一方面消除了對(duì)電容反復(fù)充放電的功耗,另一方面減少了最大電容的使用,相應(yīng)降低了DAC功耗和面積,達(dá)到了DAC功耗占系統(tǒng)總功耗1.5%和系統(tǒng)版圖面積僅259μm×165μm的效果?! ?.研究了數(shù)字失調(diào)校準(zhǔn)技術(shù),降低了比較器失調(diào)的影響,不需要比較器失調(diào)校準(zhǔn)電路,相應(yīng)降低了系統(tǒng)功耗。設(shè)計(jì)了動(dòng)態(tài)比較器,沒(méi)有靜態(tài)電流,降低了比較器功耗。

逐次逼近型模數(shù)轉(zhuǎn)換器(successive approximatiONregiSTer analog-to-digital converter,SAR ADC)是應(yīng)用于采樣速率低于5,MHz 的中高分辨率的常見(jiàn)結(jié)構(gòu),其分辨率一般為8~16 位,因制造工藝與現(xiàn)代數(shù)字CMOS 工藝的兼容性好,且易于在較低的工藝成本下實(shí)現(xiàn),所以廣泛應(yīng)用于現(xiàn)代超大規(guī)模集成電路與片上系統(tǒng)(system-on-chip,SOC),如便攜式/電池供電儀表、筆輸入量化器、工業(yè)控制和數(shù)據(jù)/信號(hào)采集器等。

設(shè)計(jì)了一款10位低功耗SAR ADC,采用溫度計(jì)碼控制的開(kāi)關(guān)邏輯結(jié)構(gòu)代替?zhèn)鹘y(tǒng)的開(kāi)關(guān)陣列控制數(shù)模(digital-to-analog,D/A)轉(zhuǎn)換器的動(dòng)作,從而提高了D/A 轉(zhuǎn)換器的線(xiàn)性度并降低了ADC 的功耗。ADC 在 250,kHz 的采樣速度下實(shí)現(xiàn)了10 位的模數(shù)轉(zhuǎn)換功能,功耗小于2,mW。

1 SAR ADC的結(jié)構(gòu)和工作原理

傳統(tǒng)SAR ADC 的結(jié)構(gòu)主要包括5 個(gè)部分,分別是:采樣保持電路、模擬比較器、D/A 轉(zhuǎn)換器、逐次逼近寄存器和邏輯控制單元。在很多實(shí)際電路中,采樣保持與D/A 轉(zhuǎn)換器合二為一。

SAR ADC 通過(guò)比較器對(duì)D/A 轉(zhuǎn)換器產(chǎn)生的參考電壓和采樣所得的模擬輸入電壓進(jìn)行比較,由逐次逼近寄存器逐次地決定每一位數(shù)字碼,直到完成最低有效位(least significant bit,LSB)的轉(zhuǎn)換。SAR ADC采用二進(jìn)制搜索算法來(lái)決定模數(shù)轉(zhuǎn)化過(guò)程中的數(shù)字碼值,N 位的SAR ADC需要進(jìn)行N 步的轉(zhuǎn)化。

在SAR ADC 中,數(shù)字模塊消耗的功耗較小,整個(gè)SAR ADC的功耗主要集中在3 個(gè)方面。

(1)對(duì)采樣保持電容的充放電。

(2)對(duì)D/A轉(zhuǎn)換器中二進(jìn)制加權(quán)電容的充放電。

(3)模數(shù)轉(zhuǎn)換過(guò)程中比較器所消耗的功耗。

有關(guān)降低SAR ADC 功耗的文獻(xiàn)通常針對(duì)以上3個(gè)方面來(lái)提出電路結(jié)構(gòu)的改進(jìn)方案,如在數(shù)模轉(zhuǎn)換器中采用特殊結(jié)構(gòu)的電容陣列以及采用功耗較低的動(dòng)態(tài)比較器等。

為了降低ADC 的整體功耗,筆者設(shè)計(jì)的D/A 轉(zhuǎn)換器采用了電荷分配型的結(jié)構(gòu)。與其他同類(lèi)型ADC的最大區(qū)別在于用溫度計(jì)碼的開(kāi)關(guān)邏輯結(jié)構(gòu)代替了常用的二進(jìn)制碼開(kāi)關(guān)來(lái)控制D/A 轉(zhuǎn)換器,從而合理優(yōu)化了電容陣列的開(kāi)關(guān)邏輯結(jié)構(gòu),減小了開(kāi)關(guān)的動(dòng)作頻率,既提高了D/A 轉(zhuǎn)換器的分辨率和線(xiàn)性度,同時(shí)又降低了整個(gè)系統(tǒng)的功耗。

2 基于開(kāi)關(guān)邏輯結(jié)構(gòu)的D/A轉(zhuǎn)換器

2.1 D/A轉(zhuǎn)換器的基本原理

傳統(tǒng)型電荷分配型D/A 轉(zhuǎn)換器通常由一個(gè)二進(jìn)制加權(quán)電容陣列、一個(gè)與LSB 等值的電容和開(kāi)關(guān)陣列組成,其轉(zhuǎn)換過(guò)程可以分為3 個(gè)階段。

(1)采樣階段:此時(shí),所有電容的上極板接地,下極板接輸入電壓,這樣,上極板存儲(chǔ)了與輸入電壓成正比的電荷,這些電荷在D/A 轉(zhuǎn)換器的轉(zhuǎn)換過(guò)程中保持不變。

(2)保持階段:此階段,二進(jìn)制加權(quán)電容的上極板接地開(kāi)關(guān)斷開(kāi),下極板接地,引起電容陣列上極板的參考電壓的變化。

(3)再分配階段:此時(shí),逐次逼近寄存器的最高位被置為1,即最大的電容2N-1C 的下極板連接到基準(zhǔn)電壓Vref,在下一個(gè)時(shí)鐘周期來(lái)臨時(shí),最大的電容的下極板的連接狀態(tài)是由比較器的比較結(jié)果決定的。同時(shí)次大的電容的下極板連接到基準(zhǔn)電壓Vref.這個(gè)過(guò)程將會(huì)進(jìn)行N 次,在每一個(gè)時(shí)鐘周期內(nèi)比較器的比較結(jié)果決定了原先被試探的電容的下極板接地或是接基準(zhǔn)電壓Vref,同時(shí)將比試探電容小一半的那個(gè)電容設(shè)為試探電容,直到整個(gè)轉(zhuǎn)換過(guò)程完成,即最小電容的下極板狀態(tài)被決定。

2.2 D/A轉(zhuǎn)換器的低功耗設(shè)計(jì)

所設(shè)計(jì)的開(kāi)關(guān)邏輯結(jié)構(gòu)的D/A 轉(zhuǎn)換器如圖1 所示,其與傳統(tǒng)型D/A 的區(qū)別是將二進(jìn)制加權(quán)電容陣列進(jìn)行了分拆并加入了碼制轉(zhuǎn)換電路。碼制轉(zhuǎn)換電路將邏輯控制單元控制的寄存器的輸出二進(jìn)制碼轉(zhuǎn)化成為溫度計(jì)碼,以溫度計(jì)碼來(lái)控制整個(gè)二進(jìn)制加權(quán)電容陣列,以降低開(kāi)關(guān)動(dòng)作頻率。

以3 位D/A 轉(zhuǎn)換器為例來(lái)簡(jiǎn)要說(shuō)明。圖2(a)為三位的二進(jìn)制碼到溫度計(jì)碼的編碼轉(zhuǎn)換圖;圖2(b)為二進(jìn)制碼對(duì)應(yīng)單位開(kāi)關(guān)輸入碼圖。由圖2 可知,一旦比較器的輸出為0,即在模數(shù)轉(zhuǎn)換過(guò)程中出現(xiàn)輸入信號(hào)比D/A 轉(zhuǎn)換器所產(chǎn)生的參考電壓小的情況,采用溫度計(jì)碼的開(kāi)關(guān)邏輯結(jié)構(gòu)對(duì)減小開(kāi)關(guān)動(dòng)作頻率是有利的。將二進(jìn)制碼轉(zhuǎn)換為溫度計(jì)碼只需通過(guò)一個(gè)簡(jiǎn)單的編碼轉(zhuǎn)換電路就可以實(shí)現(xiàn)。

2.3 D/A轉(zhuǎn)換器的功耗分析

對(duì)于電容陣列中的電容,只有當(dāng)其下極板連接到Vref 時(shí),因充電產(chǎn)生功耗。設(shè)電容陣列的建立時(shí)間為T(mén),則電容從Vref獲得的能量為:

由于電容兩端的電壓不能突變,故QC(0+)= QC(0-),且 iref(t) = -dQC/ dt ,故:

所以,可以計(jì)算每一次開(kāi)關(guān)動(dòng)作時(shí)D/A 的功耗。為了減少計(jì)算量,仍以3 位D/A 轉(zhuǎn)換器為例,對(duì)兩種D/A 轉(zhuǎn)換器的功耗進(jìn)行比較,如圖3 所示,箭頭旁邊的數(shù)字為每一次開(kāi)關(guān)動(dòng)作時(shí)消耗的能量。圖3顯示當(dāng)比較器比較的結(jié)果為0 時(shí),采用的結(jié)構(gòu)所消耗的功耗小于傳統(tǒng)的結(jié)構(gòu)。顯然,所設(shè)計(jì)的D/A 轉(zhuǎn)換器的平均功耗遠(yuǎn)小于傳統(tǒng)的D/A 轉(zhuǎn)換器。隨著ADC 位數(shù)的增加,這種平均功耗的降低效應(yīng)將會(huì)更加顯著。10 位SAR ADC和傳統(tǒng)結(jié)構(gòu)的SAR ADC功耗對(duì)比如表1 所示,數(shù)據(jù)表明改進(jìn)的SAR ADC 相對(duì)于傳統(tǒng)結(jié)構(gòu)下降了21.5%。

聲明:該篇文章為本站原創(chuàng),未經(jīng)授權(quán)不予轉(zhuǎn)載,侵權(quán)必究。
換一批
延伸閱讀

9月2日消息,不造車(chē)的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車(chē)技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車(chē)工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車(chē)。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車(chē) 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶(hù)希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱(chēng),數(shù)字世界的話(huà)語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱(chēng)"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉