基于EXB841,你知道如何設計IGBT推挽驅(qū)動電路嗎?
在下述的內(nèi)容中,小編將會對基于EXB841的IGBT推挽驅(qū)動電路予以介紹,如果IGBT推挽驅(qū)動電路是您想要了解的焦點之一,不妨和小編共同閱讀這篇文章哦。
一、IGBT
IGBT是強電流、高壓應用和快速終端設備用垂直功率MOSFET的自然進化。MOSFET由于實現(xiàn)一個較高的擊穿電壓BVDSS需要一個源漏通道,而這個通道卻具有很高的電阻率,因而造成功率MOSFET具有RDS(on)數(shù)值高的特征,IGBT消除了現(xiàn)有功率MOSFET的這些主要缺點。雖然最新一代功率MOSFET器件大幅度改進了RDS(on)特性,但是在高電平時,功率導通損耗仍然要比IGBT 高出很多。IGBT較低的壓降,轉(zhuǎn)換成一個低VCE(sat)的能力,以及IGBT的結(jié)構(gòu),與同一個標準雙極器件相比,可支持更高電流密度,并簡化 IGBT驅(qū)動器的原理圖。
正式商用的高壓大電流IGBT器件至今尚未出現(xiàn),其電壓和電流容量還很有限,遠遠不能滿足電力電子應用技術(shù)發(fā)展的需求,特別是在高壓領域的許多應用中,要求器件的電壓等級達到10KV以上。目前只能通過IGBT高壓串聯(lián)等技術(shù)來實現(xiàn)高壓應用。國外的一些廠家如瑞士ABB公司采用軟穿通原則研制出了8KV的IGBT器件,德國的EUPEC生產(chǎn)的6500V/600A高壓大功率IGBT器件已經(jīng)獲得實際應用,日本東芝也已涉足該領域。與此同時,各大半導體生產(chǎn)廠商不斷開發(fā)IGBT的高耐壓、大電流、高速、低飽和壓降、高可靠性、低成本技術(shù),主要采用1um以下制作工藝,研制開發(fā)取得一些新進展。
二、基于EXB841的IGBT推挽驅(qū)動電路
IGBT驅(qū)動電路需要提供適當?shù)碾妷?、電流和保護功能,以確保IGBT能夠正常工作并防止損壞。此外,高速驅(qū)動和溫度監(jiān)測也是提高系統(tǒng)性能和可靠性的重要要求。
EXB841工作原理如圖1,當EXB841的14腳和15腳有10mA的電流流過1us以后IGBT正常開通,VCE下降至3V左右,6腳電壓被鉗制在8V左右,由于VS1穩(wěn)壓值是13V所以不會被擊穿,V3不導通,E點的電位約為20V,二極管VD,截止,不影響V4和V5正常工作。
當14腳和15腳無電流流過,則V1和V2導通,V2的導通使V4截止、V5導通,IGBT柵極電荷通過V5迅速放電,引腳3電位下降至0V,是IGBT棚一射間承受5V左右的負偏壓,IGBT可靠關斷,同時VCE的迅速上升使引腳6°懸空“.C2的放電使得B點電位為OV,則VS1仍然不導通,后續(xù)電路不動作,IGBT正常關斷。
如有過流發(fā)生,IGBT的V CE過大使得VD2截止,使得VS1擊穿,V3導通,C4通過R7放電,D點電位下降,從而使IGBT的棚一射間的電壓UGE降低,完成慢關斷,實現(xiàn)對IGBT的保護。由EXB841實現(xiàn)過流保護的過程可知,EXB841判定過電流的主要依據(jù)是6腳的電壓,6腳的電壓不僅與VCE有關,還和二極管VD2的導通電壓Vd有關。
典型接線方法如圖2,使用時注意如下幾點:
a、IGBT棚-射極驅(qū)動回路往返接線不能太長(一般應該小于1m),并且應該采用雙絞線接法,防止干擾。
b、由于IGBT集電極產(chǎn)生較大的電壓尖脈沖,增加IGBT柵極串聯(lián)電阻RG有利于其安全工作。但是棚極電阻RG不能太大也不能太小,如果RG增大,則開通關斷時間延長,使得開通能耗增加;相反,如果RG太小,則使得didt增加,容易產(chǎn)生誤導通。
c、圖中電容C用來吸收由電源連接阻抗引起的供電電壓變化,并不是電源的供電濾波電容,一般取值為47F.
d、6腳過電流保護取樣信號連接端,通過快恢復二極管接IGBT集電極。
e、14、15接驅(qū)動信號,一般14腳接脈沖形成部分的地,15腳接輸入信號的正端,15端的輸入電流一般應該小于20mA,故在15腳前加限流電阻。
f、為了保證可靠的關斷與導通,在柵射極加穩(wěn)壓二極管。
最后,小編誠心感謝大家的閱讀。你們的每一次閱讀,對小編來說都是莫大的鼓勵和鼓舞。最后的最后,祝大家有個精彩的一天。