如何設(shè)計(jì)SiC功率元器件中的浪涌抑制電路?
SiC功率元器件中浪涌抑制電路設(shè)計(jì)將是下述內(nèi)容的主要介紹對(duì)象,通過(guò)這篇文章,小編希望大家可以對(duì)它的相關(guān)情況以及信息有所認(rèn)識(shí)和了解,詳細(xì)內(nèi)容如下。
一、浪涌
浪涌電流,也稱(chēng)為過(guò)電壓沖擊電流,是電力系統(tǒng)中一種短暫而突然的電流波動(dòng)現(xiàn)象。它通常是由于突發(fā)的電力故障、設(shè)備故障或其他干擾引起的。浪涌電流會(huì)產(chǎn)生高電壓,可能對(duì)電力系統(tǒng)中的設(shè)備和電路造成嚴(yán)重?fù)p害。浪涌電流的特性可以分為以下幾個(gè)方面:1. 突發(fā)性:浪涌電流的出現(xiàn)通常是突然的,并在短時(shí)間內(nèi)達(dá)到峰值。一般來(lái)說(shuō),浪涌電流的時(shí)間持續(xù)在幾十微秒至幾毫秒之間。2. 高幅值:浪涌電流的幅值往往遠(yuǎn)遠(yuǎn)超過(guò)設(shè)備正常運(yùn)行電流的數(shù)倍甚至更高,這是浪涌電流對(duì)設(shè)備損害的主要原因之一。3. 高頻率成分:浪涌電流通常由于突發(fā)性的電壓變化引起,其頻率成分有很大的變化范圍,從幾十千赫茲到幾百千赫茲不等。4. 瞬間升高:浪涌電流的瞬間升高往往超過(guò)了設(shè)備所能承受的額定電流值,這可能會(huì)導(dǎo)致設(shè)備燒毀。5. 瞬間下降: 浪涌電流在瞬間升高后,也會(huì)很快下降到正常工作電流的水平或以下。
二、SiC功率元器件中浪涌抑制電路設(shè)計(jì)
SiC功率元器件中柵極-源極電壓(VGS)的正浪涌在開(kāi)關(guān)側(cè)和非開(kāi)關(guān)側(cè)均有發(fā)生,但是尤其會(huì)造成問(wèn)題的是在LS(低邊)導(dǎo)通時(shí)的非開(kāi)關(guān)側(cè)(HS:高邊)的事件(II)。其原因是開(kāi)關(guān)側(cè)已經(jīng)處于導(dǎo)通狀態(tài),因此,當(dāng)非開(kāi)關(guān)側(cè)的正浪涌電壓超過(guò)SiC MOSFET的柵極閾值電壓(VGS(th))時(shí),HS和LS會(huì)同時(shí)導(dǎo)通并流過(guò)直通電流。
只是由于SiC MOSFET的跨導(dǎo)比Si MOSFET的跨導(dǎo)小一個(gè)數(shù)量級(jí)以上,因此不會(huì)立即流過(guò)過(guò)大的直通電流。所以即使流過(guò)了直通電流,也具有足夠的冷卻能力,只要不超過(guò)MOSFET的Tj(max),基本上沒(méi)有問(wèn)題。然而,直通電流畢竟是降低系統(tǒng)整體效率的直接因素,肯定不是希望出現(xiàn)的狀態(tài),因此就有必要增加用來(lái)來(lái)抑制浪涌電壓的電路,以更大程度地確保浪涌電壓不超過(guò)SiC MOSFET的VGS(th)。
抑制電路的示例如下。這些電路圖是在SiC MOSFET的普通驅(qū)動(dòng)電路中增加了浪涌抑制電路后的電路示例。抑制電路(a)是使用關(guān)斷用的驅(qū)動(dòng)電源VEE2時(shí)的電路,而抑制電路(b)是不使用VEE2的示例。在這兩個(gè)電路中,VCC2都是導(dǎo)通用的驅(qū)動(dòng)電源,OUT1是SiC MOSFET的導(dǎo)通/關(guān)斷信號(hào),OUT2是鏡像鉗位 控制信號(hào),GND2是驅(qū)動(dòng)電路的GND。
另外,下表中列出了所添加的抑制電路的功能。添加了上面電路圖中紅色標(biāo)記的部件。
由于D2和D3通常會(huì)吸收數(shù)十ns的脈沖,因此需要盡可能將其鉗制在低電壓狀態(tài) ,為此通常使用肖特基勢(shì)壘二極管(SBD)。另外,選擇SOD-323FL等底部電極型低阻抗封裝產(chǎn)品效果更好。
經(jīng)由小編的介紹,不知道你對(duì)SiC功率元器件中浪涌抑制電路設(shè)計(jì)是否充滿(mǎn)了興趣?如果你想對(duì)它有更多的了解,不妨嘗試在我們的網(wǎng)站里進(jìn)行搜索哦。