當(dāng)前位置:首頁 > EDA > 電子設(shè)計自動化
[導(dǎo)讀]白噪聲(white noise)是指功率譜密度在整個頻域內(nèi)均勻分布的噪聲。 所有頻率具有相同能量密度的隨機(jī)噪聲稱為白噪聲

白噪聲(white noise)是指功率譜密度在整個頻域內(nèi)均勻分布的噪聲。 所有頻率具有相同能量密度的隨機(jī)噪聲稱為白噪聲。白噪聲發(fā)射器是一種使用穩(wěn)定二機(jī)管作噪聲源,能在一定頻率范圍內(nèi)產(chǎn)生白噪聲的設(shè)備。電阻的熱噪聲是良好的白噪聲信號源,它具有均勻的功率譜,信號強(qiáng)度為微伏級,對需要小信號的場合比較適合。

白噪聲(white noise)是指功率譜密度在整個頻域內(nèi)均勻分布的噪聲。 所有頻率具有相同能量密度的隨機(jī)噪聲稱為白噪聲。白噪聲作為一種理想信號,在數(shù)學(xué)處理上具有簡單、方便等優(yōu)點。所以在系統(tǒng)辨識、線性系統(tǒng)分析和信號分析與處理中都有極重要的地位。在實際工作中,所研究某一系統(tǒng)的隨機(jī)過程,只要滿足該過程的功率譜密度在比系統(tǒng)帶寬大得多的頻率范圍內(nèi)近似均勻分布這一條件,就可以把它作為白噪聲來處理,而不會帶來多大誤差。白噪聲發(fā)生器在國外早有商品尚世,但直到近幾年還只有小信號的產(chǎn)品,它們只能供噪聲系數(shù)等測量之用。在需要大信號的用途中:如聲學(xué)側(cè)量中的白噪聲,往往需要幾瓦以上的輸出功率。沒有這種商品,看來是由于制造有困難。因為頻譜密度均勻的噪聲信號,一經(jīng)放大就難免引起頻譜畸變,從而影響測量的精密度。

白噪聲發(fā)生器比掃頻正弦波更簡單、更快速,因為它能高效地同時產(chǎn)生幅度相同的所有頻率。在被測器件(DUT)的輸入端施加白噪聲可以快速產(chǎn)生整個頻率范圍上的頻率響應(yīng)概貌。在這種情況下,不需要昂貴或復(fù)雜的掃頻正弦波發(fā)生器。只需將DUT輸出連接到頻譜分析儀并觀察即可。使用更多的均值操作和更長的采集時間,產(chǎn)生的目標(biāo)頻率范圍上的輸出響應(yīng)就更精確。

DUT對白噪聲的預(yù)期響應(yīng)是頻率整形的噪聲。以這種方式使用白噪聲可以快速暴露出意外行為,例如怪異的頻率雜散、奇怪的諧波以及不希望出現(xiàn)的頻率響應(yīng)偽像。

此外,細(xì)心的工程師可利用白噪聲發(fā)生器測試測試儀。測量頻率響應(yīng)的實驗室設(shè)備在測量已知平坦的白噪聲發(fā)生器時應(yīng)產(chǎn)生平坦的噪聲曲線。

在實際應(yīng)用方面,白噪聲發(fā)生器易于使用;體積小,足以實現(xiàn)緊湊的實驗室設(shè)置;便于攜帶,適合現(xiàn)場測量;并且價格低廉。具有大量設(shè)置的高質(zhì)量信號發(fā)生器非常靈活,十分吸引人。但是,多功能性會妨礙快速頻率響應(yīng)測量。設(shè)計良好的白噪聲發(fā)生器不需要任何控制,卻能產(chǎn)生完全可預(yù)測的輸出。

噪聲討論

電阻熱噪聲,有時稱為約翰遜噪聲或奈奎斯特噪聲,是由電阻內(nèi)部電荷載子的熱擾動產(chǎn)生的。此噪聲大致是白噪聲,接近高斯分布。在電學(xué)方面,噪聲電壓密度由下式給出:


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

VNOISE

其中,kB為波爾茲曼常數(shù),T為溫度(單位K),R為電阻。噪聲電壓是由流過基本電阻的電荷的隨機(jī)移動引起的(大致為R×INOISE)。表1顯示了20°C時的一些例子。

表1.各種電阻的噪聲電壓密度

電阻噪聲電壓密度

10 Ω0.402 nV/√Hz

100 Ω1.27 nV/√Hz

1 kΩ4.02 nV/√Hz

10 kΩ12.7 nV/√Hz

100 kΩ40.2 nV/√Hz

1 M?127 nV/√Hz

10 M?402 nV/√Hz

一個10 MΩ電阻就代表一個402 nV/√Hz寬帶電壓噪聲源與標(biāo)稱電阻串聯(lián)。R和T的變化僅以平方根形式影響噪聲,所以放大后的電阻衍生噪聲源相當(dāng)穩(wěn)定,可作為實驗室測試噪聲源。例如,從20°C改變?yōu)?°C時,電阻從293 kΩ變?yōu)?99 kΩ。噪聲密度與溫度的平方根成正比,因此6°C的溫度變化引起的噪聲密度變化相對較小,約為1%。同樣,對于電阻,2%的電阻變化引起1%的噪聲密度變化。

考慮圖1:一個10 MΩ電阻R1在運(yùn)算放大器的正端產(chǎn)生白色高斯噪聲。電阻R2和R3放大該噪聲電壓并送至輸出端。電容C1濾除斬波放大器電荷毛刺。輸出是一個10 μV/√Hz白噪聲信號。

本例中增益(1 + R2/R3)較高,為21 V/V。

即使R2很高(1 MΩ),來自R2的噪聲與放大后的R1噪聲相比也是無關(guān)緊要的。


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

圖1.白噪聲發(fā)生器的完整原理圖。低漂移微功耗LTC2063放大R1的約翰遜噪聲。

電路的放大器必須具有足夠低的折合到輸入端電壓噪聲,以便讓R1作為主要噪聲源。原因是電阻噪聲應(yīng)主導(dǎo)電路的整體精度,而不是放大器。出于相同的原因,電路的放大器必須具有足夠低的折合到輸入端電流噪聲,以避免(IN×R2)接近(R1噪聲×增益)。

白噪聲發(fā)生器中可接受多少放大器電壓噪聲?

表2顯示了增加獨(dú)立信號源引起的噪聲增加。從402 nV/√Hz到502 nV/√Hz的變化按對數(shù)算只有1.9 dB,或0.96功率dB。運(yùn)算放大器噪聲約為電阻噪聲的50%,運(yùn)算放大器VNOISE的5%不確定性僅讓輸出噪聲密度改變1%。

表2.運(yùn)算放大器噪聲貢獻(xiàn)

RNOISE (nV/√Hz)放大器en折合到輸入端總計

402 nV/√Hz300501.6 nV/√Hz

402 nV/√Hz250473.4 nV/√Hz

402 nV/√Hz200449.0 nV/√Hz

402 nV/√Hz150429.1 nV/√Hz

402 nV/√Hz100414.3 nV/√Hz

白噪聲發(fā)生器只能使用一個沒有會產(chǎn)生噪聲的電阻的運(yùn)算放大器。這種運(yùn)算放大器的輸入端必須具有平坦的噪聲曲線。但是,噪聲電壓往往不能精確定義,并且隨著生產(chǎn)、電壓和溫度的不同而有很大的差異。

其他白噪聲電路可能基于齊納二極管工作,但其可預(yù)測性非常差。不過,對于μA電流,尋找最佳齊納二極管以獲得穩(wěn)定噪聲可能很困難,尤其是在低電壓(<5V)情況下。

一些高端白噪聲發(fā)生器基于長偽隨機(jī)二進(jìn)制序列(PRBS)和特殊濾波器。使用小型控制器和DAC可能就足夠了;但是,要確保DAC不產(chǎn)生建立毛刺、諧波或交調(diào)產(chǎn)物,可能只有富有經(jīng)驗的工程師才能勝任。另外,選擇最合適的PRBS序列也會增加復(fù)雜性和不確定性。

低功耗零漂移解決方案

此項目主要有兩個設(shè)計目標(biāo):

? 一款易于使用的白噪聲發(fā)生器必須是便攜式的,也就是采用電池供電,這意味著其必須是微功耗電子設(shè)備。

? 發(fā)生器必須提供均勻的噪聲輸出,哪怕頻率低于0.1 Hz及以上。

考慮到上述噪聲討論及這些關(guān)鍵限制條件,LTC2063低功耗零漂移運(yùn)算放大器符合這一要求。


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

圖2.袖珍型白噪聲發(fā)生器原型

10 MΩ電阻的噪聲電壓為402 nV/√Hz,LTC2063的噪聲電壓大約為其一半。10 MΩ電阻的噪聲電流為40 fA/√Hz,LTC2063的噪聲電流小于其一半。LTC2063的典型電源電流為1.4μA,并且總電源電壓可降至1.7 V(額定電壓為1.8 V),因此LTC2063對電池應(yīng)用是非常理想的。根據(jù)定義,低頻測量需要很長的建立時間,因此該發(fā)生器必須由電池長時間供電。

LTC2063輸入端的噪聲密度約為200 nV/√Hz,噪聲在整個頻率范圍內(nèi)可預(yù)測且保持平坦(±0.5 dB以內(nèi))。假設(shè)LTC2063的噪聲是熱噪聲的50%,而運(yùn)算放大器電壓噪聲改變5%,則輸出噪聲密度僅改變1%。

設(shè)計保證零漂移運(yùn)算放大器沒有1/f噪聲。有些器件比其他更好,而更常見的是,寬帶規(guī)格錯誤或1/f噪聲遠(yuǎn)高于數(shù)據(jù)手冊中給出的值,特別是對于電流噪聲。一些零漂移運(yùn)算放大器的數(shù)據(jù)手冊噪聲曲線不會下降到MHz頻率區(qū)域,可能是為了掩蓋1/f噪聲。斬波穩(wěn)定運(yùn)算放大器可能是解決辦法,它能在超低頻率時讓噪聲保持平坦。另外,高頻噪聲凸起和開關(guān)噪聲不得損害性能。這里顯示的數(shù)據(jù)支持使用LTC2063來應(yīng)對這些挑戰(zhàn)。

電路說明

薄膜R1 (Vishay/Beyschlag MMA0204 10 MΩ)產(chǎn)生大部分噪聲。MMA0204是少數(shù)幾個兼具高品質(zhì)和低成本的10 MΩ選擇之一。原則上,R1可以是任何10 MΩ電阻,因為信號電流非常小,所以可忽略1/f噪聲。對于該發(fā)生器的主要元件,最好避免使用精度或穩(wěn)定性可疑的低成本厚膜芯片。

為獲得最佳精度和長期穩(wěn)定性,R2、R3或RS可以是0.1%薄膜電阻,例如TE CPF0603。C2/C3可以是大多數(shù)電介質(zhì)電容中的一種;C0G可用來保證低漏電流。


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

圖3.裝置布局

部署詳情

環(huán)路面積R1/C1/R3應(yīng)減至最小,以確保EMI抑制性能最佳。此外,R1/C1應(yīng)該加以很好的屏蔽,以防電場影響,這將在EMI考量部分進(jìn)一步討論。盡管不是很關(guān)鍵,但R1應(yīng)避免較大溫度變化。有了良好的EMI屏蔽,熱屏蔽往往是足夠的。

應(yīng)避免VCM范圍內(nèi)的LTC2063軌到軌輸入電壓躍遷區(qū)域,因為交越可能產(chǎn)生較高且穩(wěn)定性較差的噪聲。為獲得最佳效果,V+至少應(yīng)使用1.1 V,輸入共模電壓為0。

請注意,10 kΩ的RS似乎很高,但微功耗LTC2063具有較高輸出阻抗,即使10 kΩ也不會將LTC2063與其輸出端的負(fù)載電容完全解耦。對于該白噪聲發(fā)生器電路,導(dǎo)致峰化的一些輸出電容可以是設(shè)計特性,而不是危險。

輸出端看到的是10 kΩ RS和一個50 nF接地電容CX。此電容CX將與LTC2063電路相互作用,導(dǎo)致頻率響應(yīng)出現(xiàn)峰化。此峰化可用來擴(kuò)展發(fā)生器的平坦帶寬,就像擴(kuò)音器中的孔眼擴(kuò)大下端一樣。假設(shè)使用高阻抗負(fù)載(>100 kΩ),因為低阻抗負(fù)載會顯著降低輸出電平,并且還可能影響峰化。

可選調(diào)諧

在高頻限值時,有幾個IC參數(shù)(例如ROUT和GBW)會影響平坦度。如果不使用信號分析儀,CX的推薦值為47 nF,這通常會產(chǎn)生200 Hz至300 Hz (-1 dB)的帶寬。

不過,CX可以針對平坦度或帶寬進(jìn)行優(yōu)化,典型值為CX = 30 nF至50 nF。要獲得更寬的帶寬和更高的峰值,請使用較小的CX。要使響應(yīng)衰減更快,請使用較大的CX。

關(guān)鍵IC參數(shù)與運(yùn)算放大器電源電流有關(guān),低電源電流的器件可能需要稍大的CX,而高電源電流的器件很可能需要小于30 nF的電容,同時實現(xiàn)更寬的平坦帶寬。

這里的曲線突出顯示了CX值如何影響閉環(huán)頻率響應(yīng)。

測量

輸出噪聲密度與CX(RS = 10 kΩ,±2.5 V電源)的關(guān)系如圖4所示。輸出RC濾波器能有效消除時鐘噪聲。該圖顯示了CX = 0和CX = 2.2 nF/10 nF/47 nF/68 nF時輸出與頻率的關(guān)系。


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

圖4.圖1所示設(shè)計的輸出噪聲密度

CX = 2.2 nF時表現(xiàn)出輕微的峰化,而CX = 10 nF時峰化最強(qiáng),然后隨著CX增大逐漸下降。CX = 68 nF的跡線顯示沒有峰化,但平坦帶寬明顯較低。最佳結(jié)果是CX約為47 nF時;時鐘噪聲比信號電平低三個數(shù)量級。由于垂直分辨率有限,無法精確判斷輸出幅度平坦度與頻率的關(guān)系。該圖使用±2.5 V電池電源產(chǎn)生,但設(shè)計允許使用兩枚紐扣電池(約±1.5 V)。

圖5的Y軸表示放大后的平坦度。對于許多應(yīng)用,1 dB以內(nèi)的平坦度即夠用,<0.5 dB比較典型。這里,CX = 50 nF最佳(RS = 10 kΩ,VSUPPLY ±1.5 V);CX = 45 nF,不過55 nF也可以接受。


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

圖5.圖1所示設(shè)計的輸出噪聲密度的放大視圖

高分辨率平坦度測量需要時間;對于此曲線(10 Hz到1 kHz,平均1000次),每條跡線大約花費(fèi)20分鐘。標(biāo)準(zhǔn)解決方案使用CX = 50 nF。所示的43nF、47nF和56nF跡線(全部CS < 0.1%容差)與最佳平坦度相比有很小但明顯的偏差。添加CX = 0的橙色曲線以表明峰化提高了平坦帶寬(對于Δ= 0.5 dB,從230 Hz提高到380 Hz)。

對于恰好50 nF電容,串聯(lián)2×0.1μF C0G可能是最簡單解決方案。0.1μF C0G 5% 1206很容易從Murata、TDK和Kemet購得。另一種選擇是47 nF C0G(1206或0805);此器件更小,但可能不那么常見。如前所述,最佳CX隨實際IC參數(shù)而變化。

我們還檢查了平坦度與電源電壓的關(guān)系,參見圖6。標(biāo)準(zhǔn)電路為±1.5 V。將電源電壓改變?yōu)椤?.0 V或±2.5 V時,峰化有較小變化,平坦度也有較小變化(因為VN隨電源而變化,熱噪聲占優(yōu)勢)。在整個電源電壓范圍內(nèi),峰化和平坦度的變化均為約0.2 dB。該曲線表明,當(dāng)電路由兩個小電池供電時,幅度穩(wěn)定性和平坦度良好。


白噪聲發(fā)生器為什么比掃頻正弦波更簡單、更快速

圖6.各種電源電壓對應(yīng)的輸出噪聲密度

對于此原型,電源電壓為±1.5 V時,平坦度在0.5 dB以內(nèi),頻率最高約為380 Hz。在±1.0 V電源下,平坦度和峰化略有增加。對于±1.5 V至±2.5 V電源電壓,輸出電平?jīng)]有明顯變化??俈 p-p(或V rms)輸出電平取決于固定的10μV/√Hz密度以及帶寬。此原型的輸出信號約為1.5 mV p-p。在某些非常低的頻率(MHz范圍),噪聲密度可能會超過規(guī)定的10μV/√Hz。對于此原型,已經(jīng)證實在0.1 Hz時,噪聲密度仍然保持在10μV/√Hz。

就穩(wěn)定性和溫度而言,熱噪聲占主導(dǎo)地位,因此對于T = 22(±6)°C,幅度變化為±1%,這一變化在圖上幾乎不可見。

EMI考量

該原型使用帶聚酰亞胺絕緣層的小銅箔作為屏蔽層。此箔片或翼片纏繞在輸入元件(10 M + 22 pF)周圍,并焊接到PCB背面的接地端。改變翼片的位置對EMI靈敏度和低頻(LF)雜散風(fēng)險有顯著影響。實驗表明,偶爾出現(xiàn)的低頻雜散是由EMI引起的,該雜散可通過非常好的屏蔽來防止。使用翼片,在沒有任何附加高導(dǎo)磁合金屏蔽的情況下,原型在實驗室中的響應(yīng)很干凈。頻譜分析儀上沒有出現(xiàn)主電源噪聲或其他雜散。如果信號上出現(xiàn)過多的噪聲,則可能需要額外的EMI屏蔽。

當(dāng)使用外部電源而非電池時,共模電流很容易加到信號上。建議將儀器接地與實心導(dǎo)線連接,并在發(fā)生器的供電線中使用CM扼流圈。

限制

總有一些應(yīng)用需要更多帶寬,例如完整音頻范圍或超聲波范圍。在幾μA的電源電流下,更高的帶寬并不現(xiàn)實。憑借大約300 Hz至400 Hz的平坦帶寬,基于LTC2063電阻噪聲的電路可用于測試某些儀器的50 Hz/60 Hz主電源頻率,例如地震檢波器應(yīng)用。該范圍適合測試各種VLF應(yīng)用(例如傳感器系統(tǒng)),因為頻率范圍低至0.1 Hz以下。

輸出信號電平較低(<2 mV p-p)。后續(xù)的LTC2063配置為具有5倍增益的同相放大器,加上另一個RC輸出濾波器,可提供同樣受控的300 Hz平坦寬帶噪聲輸出,而且幅度更大。在不能使閉環(huán)頻率范圍最大化的情況下,反饋電阻兩端的電容可以降低整體帶寬。在這種情況下,RS和CX的影響在閉環(huán)響應(yīng)的邊緣較小,甚至可以忽略。

能產(chǎn)生無規(guī)噪聲的噪聲源是很多的:如熱噪聲、散粒噪聲和閃爍噪聲等。大部分的無規(guī)噪聲具有白譜帶,從低頻起延展到可觀的頻率范圃。由于各種噪聲源的物理特性不同,頻帶的高頻極限就很不一致。電阻的熱噪聲是良好的白噪聲信號源,它具有均勻的功率譜,信號強(qiáng)度為微伏級,對需要小信號的場合比較適合,如果需要放大就比較麻煩。利用散粒效應(yīng)產(chǎn)生白噪聲的噪聲二極管,可以作為標(biāo)準(zhǔn)白噪聲源,在幾十千赫到數(shù)十兆赫范圍內(nèi),具有均勻的頻譜密度,只是由于低頻時受到閃爍噪聲的影響,輸出較大。因此在需要音頒段白噪聲時,可以由高頻噪聲差頻取得。三極以上的電子管也能產(chǎn)生噪聲,其等效噪聲電阻與其跨導(dǎo)成反比,一般具有微伏極輸出,混頻管與變頻管甚至可達(dá)6-7微伏。西德SUF型噪聲發(fā)生器郎是利用五極管作為噪聲源的,效果媛佳。光電倍增管在2赫到20兆赫的廣闊頻段內(nèi)有相當(dāng)均勻的頻譜密度,輸出信號也大,是優(yōu)良的白噪聲源。半導(dǎo)體二極管和三極管也可作為噪聲源,但性能不夠穩(wěn)定,因此采用較少。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉