當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀] 綠色能源標(biāo)準(zhǔn)、更低成本和更高音頻保真度的需求正在推動(dòng)D類放大器在高功率音頻中的應(yīng)用。傳統(tǒng)的模擬實(shí)現(xiàn)(例如AB類拓?fù)浣Y(jié)構(gòu))比較復(fù)雜且效率低,但由于其對(duì)音頻的高保真性能,占據(jù)了高端音頻市場。D類系統(tǒng)設(shè)計(jì)更簡單

綠色能源標(biāo)準(zhǔn)、更低成本和更高音頻保真度的需求正在推動(dòng)D類放大器在高功率音頻中的應(yīng)用。傳統(tǒng)的模擬實(shí)現(xiàn)(例如AB類拓?fù)浣Y(jié)構(gòu))比較復(fù)雜且效率低,但由于其對(duì)音頻的高保真性能,占據(jù)了高端音頻市場。D類系統(tǒng)設(shè)計(jì)更簡單、更高效,且提供媲美模擬放大器的高保真能力,正在迅速縮小在高端音頻市場中的差距。
 
典型的D類音頻系統(tǒng)先把模擬音頻輸入信號(hào)轉(zhuǎn)換為數(shù)字PWM信號(hào),在數(shù)字域進(jìn)行功率放大,然后再把數(shù)字信號(hào)轉(zhuǎn)換成模擬音頻信號(hào)輸出。如圖1所示,輸入的音頻信號(hào)被送到一個(gè)脈沖寬度調(diào)制器(PWM),它由運(yùn)算放大器和比較器組成,調(diào)制器通過生成與音頻輸入信號(hào)瞬時(shí)值成正比的調(diào)制占空比信號(hào)對(duì)音頻數(shù)字化。

圖1:D類放大器的基本框圖
 
PWM信號(hào)進(jìn)行適當(dāng)?shù)碾娖阶儞Q,然后送到柵極驅(qū)動(dòng)器,這個(gè)驅(qū)動(dòng)器控制由MOSFET(M1和M2)組成的雙態(tài)功率電路。放大后的信號(hào)然后通過輸出濾波器(消除PWM載波頻率),最終僅僅放大了的模擬音頻信號(hào)驅(qū)動(dòng)揚(yáng)聲器。通過把濾波器輸入信號(hào)反饋到錯(cuò)誤放大器輸入端,進(jìn)行外部環(huán)路濾波,降低了失真和噪聲,進(jìn)一步提高了音頻輸出保真度。
 
D類放大器設(shè)計(jì)
 
功效
傳統(tǒng)的模擬功率放大器依賴于線性放大電路,很容易造成高功率損失。而相比之下,D類放大器的功率效率可以達(dá)到90%或更高(這取決于設(shè)計(jì))。這種高效率的益處是D類放大器技術(shù)所固有的,放大機(jī)制使用二進(jìn)制轉(zhuǎn)換(通常是功率MOSFET)。這些開關(guān)或者完全導(dǎo)通或者完全關(guān)閉,只有很少的時(shí)間花費(fèi)在狀態(tài)轉(zhuǎn)換上。離散的開關(guān)動(dòng)作和低MOSFET導(dǎo)通阻抗,減少了I2R損耗,提高了效率。然而,在實(shí)踐中,開關(guān)轉(zhuǎn)換時(shí)間(死區(qū)時(shí)間)必須足夠長以避免兩開關(guān)同時(shí)運(yùn)行時(shí)效率急劇下降。
 
高保真
音頻保真度可以被定義為聲音再生后的完整性,對(duì)于音頻系統(tǒng),保真度一直是聲音質(zhì)量的代名詞。同時(shí)其他指標(biāo)也被用于衡量保真度,部分指標(biāo)的測量對(duì)設(shè)計(jì)人員來說特別具有挑戰(zhàn)性。最具挑戰(zhàn)性的兩個(gè)指標(biāo)是:總諧波失真(THD)和噪聲(N),統(tǒng)稱為THD+N。
 
THD是對(duì)音頻系統(tǒng)的精確測量,非常類似于高保真本身。再生信號(hào)的誤差來自于其他元件產(chǎn)生的輸入頻率諧波,明顯的區(qū)別于純輸出信號(hào)。THD是所有多余的諧波頻率能量與基本輸入頻率能量的比值,典型的在給定系統(tǒng)的半功率下測量獲得。THD性能對(duì)于大多數(shù)非高保真音頻應(yīng)用來說通常小于0.1%,挑剔的聽眾通常需要THD等級(jí)低至0.05%甚至更低。
 
輸出噪聲等級(jí)是對(duì)沒有信號(hào)輸入的放大器輸出的本底噪聲電平的測量。對(duì)于大多數(shù)揚(yáng)聲器來說,100-500µV的本底噪聲在正常的收聽距離內(nèi)是聽不到的,而達(dá)到1mV的本底噪聲就太吵了,所以,THD+N是衡量放大器音頻保真度的很好指標(biāo)。
 
D類驅(qū)動(dòng)器IC:特性和益處
 
可編程死區(qū)時(shí)間
D類放大器死區(qū)時(shí)間(即兩個(gè)開關(guān)均處于關(guān)閉狀態(tài)時(shí)的時(shí)間段)直接影響到效率和THD。過于短暫的死區(qū)時(shí)間會(huì)引起直通電流,降低效率,過長的死區(qū)時(shí)間又會(huì)增大THD,這會(huì)給音頻保真度帶來不利影響。

必須精確設(shè)定死區(qū)時(shí)間,找到使功率效率和THD都最優(yōu)的“最佳位置”。當(dāng)前典型高電壓音頻驅(qū)動(dòng)器具有不精確的、重疊的死區(qū)時(shí)間設(shè)置(即1/n延遲值)。因此,多數(shù)設(shè)計(jì)人員都選擇采用分立元件來處理死區(qū)時(shí)間,這不僅花費(fèi)高而且耗時(shí)間。一個(gè)簡潔且經(jīng)濟(jì)的解決方法是集成具有高精度死區(qū)發(fā)生器的柵極驅(qū)動(dòng)器。


電平變換
由于輸入電平轉(zhuǎn)換的要求,實(shí)現(xiàn)雙態(tài)D類放大器可能有一定難度。 在高功率D類放大器中,最好為功率MOSFET階段提供高壓供電軌(±VSS)。實(shí)際D類放大器設(shè)計(jì)中,±100Vdc電壓可以在8Ω負(fù)載上產(chǎn)生高達(dá)600W的音頻功率。
 
大多數(shù)現(xiàn)有高電壓IC(HVIC)D類驅(qū)動(dòng)器缺乏將低壓調(diào)制部分轉(zhuǎn)為高壓電源部分的能力。能夠提供電平轉(zhuǎn)換的驅(qū)動(dòng)器有也有其他不足,這使得它很難成為D類操作的理想選擇(例如,驅(qū)動(dòng)器輸出接地端子采用負(fù)電壓軌,要求輸入驅(qū)動(dòng)信號(hào)電平轉(zhuǎn)換到負(fù)電源)。通過分立器件添加該項(xiàng)功能,成本高、設(shè)計(jì)難度大且占用大量空間,具備高電壓雙極供電接口的電平轉(zhuǎn)換解決方案是D類設(shè)計(jì)的顯著優(yōu)勢。
 
通常,大多數(shù)驅(qū)動(dòng)器解決方案不提供輸入輸出隔離,也不提供驅(qū)動(dòng)器間的隔離,因此需要額外元件提供電平轉(zhuǎn)換機(jī)制。

 
圖3:低壓數(shù)字調(diào)制器與高壓雙極輸出電源之間接口需要電平轉(zhuǎn)換
 
可靠性和噪聲抑制
現(xiàn)有的典型柵極驅(qū)動(dòng)器IC在20V/ns或更大的高電壓瞬變時(shí)容易發(fā)生鎖閉,通常情況下對(duì)高轉(zhuǎn)換速率瞬變噪聲(從功率級(jí)反饋耦合到精確數(shù)字輸入端)沒有抑制作用。在試圖獲得最佳音頻保真度且保持本底噪聲盡可能低時(shí),缺乏噪聲抑制是其主要劣勢。
 
高頻操作
D類柵極驅(qū)動(dòng)器的最佳特性之一是能夠在高開關(guān)頻率下運(yùn)行,且傳播延遲最小。這些特性使得在反饋路徑上的總循環(huán)延遲非常低,獲得盡可能好的噪聲性能。更高頻率下運(yùn)行也提高了“循環(huán)增益”,改善了放大器的失真性能。現(xiàn)有的大多數(shù)HVIC驅(qū)動(dòng)器僅支持最高1MHz的調(diào)制頻率。
 
集成度
在當(dāng)今競爭激烈的全球市場上,集成了所有這些特性的解決方案,將為D類放大器設(shè)計(jì)人員提供很大便利,他們可以通過縮短設(shè)計(jì)時(shí)間、減少元件數(shù)量、降低插入成本以及因較多器件數(shù)量而帶來的較低可靠性,從而使其產(chǎn)品盡早上市。
 
小結(jié)
   D類放大器的特性遠(yuǎn)遠(yuǎn)超越了傳統(tǒng)模擬放大器,包括更低的THD、更小的電路板空間、更高的功率效率和更低的BOM成本。高集成的柵極驅(qū)動(dòng)器IC對(duì)系統(tǒng)構(gòu)架和音頻性能都有顯著的積極作用。Silicon Labs公司的Si8241/8244音頻驅(qū)動(dòng)器是首個(gè)集成所有特性到單一IC封裝的高功率D類放大器解決方案。這些柵極驅(qū)動(dòng)器的優(yōu)點(diǎn)包括:為最低THD和最佳功效提供高精度死區(qū)時(shí)間設(shè)置;無需為輸入信號(hào)電平轉(zhuǎn)換而增加復(fù)雜設(shè)計(jì)和器件數(shù)量;隔離的輸出驅(qū)動(dòng)器,簡化雙態(tài)開關(guān)器實(shí)現(xiàn);對(duì)瞬變電源有較高抑制力。要想了解有關(guān)Si824x D類音頻驅(qū)動(dòng)程序的更多內(nèi)容,以及如何利用這些柵極驅(qū)動(dòng)器為高保真音頻市場提供新的設(shè)計(jì)思路,請(qǐng)?jiān)L問:www.silabs.com/audio-driver。

 

 

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉