通信系統(tǒng)設(shè)計(jì)使用差分信號(hào)的優(yōu)勢(shì)
掃描二維碼
隨時(shí)隨地手機(jī)看文章
通信系統(tǒng)設(shè)計(jì)的主要挑戰(zhàn)之一是如何成功捕獲高保真度信號(hào)。為了避免強(qiáng)干擾效應(yīng)、信號(hào)失真和靈敏度降低,蜂窩通信系統(tǒng)必須滿足蜂窩標(biāo)準(zhǔn)的嚴(yán)格要求,比如具有高動(dòng)態(tài)范圍、高輸入線性度和低噪聲的碼分多址(CDMA)和寬帶CDMA(W-CDMA)。
過去,一些實(shí)踐性問題常導(dǎo)致完全差分信號(hào)鏈的性能優(yōu)勢(shì)被單端信號(hào)鏈所掩蓋,但隨著集成射頻電路技術(shù)和高性能差分射頻構(gòu)建模塊的不斷發(fā)展,如今差分架構(gòu)已能應(yīng)用于高性能接收機(jī)設(shè)計(jì)中。本文將討論差分信號(hào)鏈在3G和4G無線應(yīng)用中的性能和優(yōu)點(diǎn)。
接收機(jī)信號(hào)鏈
圖1是傳統(tǒng)超外差接收機(jī)的拓?fù)浣Y(jié)構(gòu),它很好地描述了差分信號(hào)鏈相對(duì)單端信號(hào)鏈的優(yōu)勢(shì)。不管采用什么拓?fù)洌覀兊哪繕?biāo)就是將所需信號(hào)成功發(fā)送到ADC端進(jìn)行數(shù)字轉(zhuǎn)化。信號(hào)路徑由以下幾個(gè)射頻模塊組成:天線、濾波器、低噪聲放大器(LNA)、混頻器、ADC驅(qū)動(dòng)放大器和ADC。
圖1:接收機(jī)在不斷發(fā)展,越來越多的接收機(jī)將使用差分元件。這個(gè)趨勢(shì)開始于ADC,并將逐漸向信號(hào)鏈上游移動(dòng)。先進(jìn)的集成射頻電路技術(shù)和差分射頻構(gòu)建模塊的擴(kuò)充允許差分架構(gòu)應(yīng)用于高性能接收機(jī)設(shè)計(jì)。
LNA是天線之后的第一個(gè)模塊,用于放大熱噪聲之上的信號(hào)。這級(jí)電路中的噪聲非常重要,因?yàn)樗鼘Q定系統(tǒng)靈敏度,而放大可以確保隨后的混頻器和放大器不會(huì)增加顯著的噪聲。沿信號(hào)路徑往后是帶通濾波器,用于抑制帶外信號(hào),減少由其它電路級(jí)引起的失真和噪聲。
跟隨LNA之后,混頻器頻率轉(zhuǎn)換感興趣的信號(hào),將高頻射頻信號(hào)下變頻至頻率更低、更易于管理的中頻信號(hào)(IF)。ADC驅(qū)動(dòng)放大器和抗混濾波器(AAF)對(duì)將要數(shù)字化的信號(hào)進(jìn)行預(yù)處理。驅(qū)動(dòng)器提供增益,AAF抑制第一奈奎斯特區(qū)外的信號(hào),包括將會(huì)發(fā)送給ADC的噪聲和帶外雜散分量。在模擬信號(hào)路徑末端,由ADC完成基帶信息的數(shù)字轉(zhuǎn)換。
理想情況下,只有感興趣的信號(hào)(圖1左邊的藍(lán)色圖形)才會(huì)被傳送到數(shù)字域。需要使用一個(gè)魯棒系統(tǒng)來處理這個(gè)可能很小的目標(biāo)信號(hào),同時(shí)抑制可能較大的干擾信號(hào)。魯棒系統(tǒng)的設(shè)計(jì),需要具有高靈敏度、輸入線性、選擇性和抗噪聲性能。根據(jù)具體的應(yīng)用和架構(gòu),性能指標(biāo)可能有所變化,但在大多數(shù)通信系統(tǒng)中,像失真、本底噪聲和動(dòng)態(tài)范圍等都是通常要考慮的要素。輸入三階截取點(diǎn)(IP3)和1dB壓縮點(diǎn)(P1dB)必須高。其它需要考慮的因素還包括低成本、低功耗和小尺寸。
差分優(yōu)勢(shì)
圖2比較了單端信號(hào)和差分信號(hào)之間的基本區(qū)別。這里使用了一個(gè)通用增益模塊,但相同的概念可應(yīng)用于信號(hào)鏈中的混頻器和其它器件。在比較單端和差分信號(hào)時(shí),要將系統(tǒng)級(jí)性能*估標(biāo)準(zhǔn)牢記在心,以實(shí)現(xiàn)良好的總體接收機(jī)設(shè)計(jì)。
圖2:差分信號(hào)固有的抵消優(yōu)勢(shì)可抵抗噪聲和干擾,同時(shí)提供偶次諧波的抵消作用。
根據(jù)定義,單端信號(hào)是一種不平衡信號(hào),通過感興趣信號(hào)與固定參考點(diǎn)之間的差值來進(jìn)行衡量。這個(gè)參考點(diǎn)通常是地,用作信號(hào)的返回路徑。如果有誤差源被引入信號(hào)路徑,就會(huì)產(chǎn)生問題。因?yàn)榈貐⒖际遣皇茏⑷胝`差的影響,因此誤差將通過信號(hào)向前傳送。如果不使用極度復(fù)雜的抵消技術(shù),在單端配置中引入的任何信號(hào)變化都很難消除。因此,單端信號(hào)很容易受噪聲和電磁耦合干擾的影響。
另一方面,差分信號(hào)由成對(duì)的平衡信號(hào)組成,這些信號(hào)以參考點(diǎn)中心,幅度相同,相位相反。正和負(fù)平衡信號(hào)之間的差值對(duì)應(yīng)于復(fù)合差分信號(hào)。如果誤差被引入差分系統(tǒng)路徑,它將以相同的幅度同時(shí)增加到兩個(gè)平衡信號(hào)上。因?yàn)榉祷芈窂讲⒉皇且粋€(gè)固定的參考點(diǎn),誤差將在差分信號(hào)中抵消。因此差分信號(hào)鏈不易受噪聲和干擾的影響。這種固有的誤差抵消功能還可以提供更好的共模抑制比(CMRR)和電源抑制比(PSSR)。
差分信號(hào)鏈還有一個(gè)單端信號(hào)鏈不具備的優(yōu)勢(shì),即在相同電源電壓下復(fù)合信號(hào)擺幅可以達(dá)到單端擺幅的兩倍,從而增加了信噪比。換句話說,在相同電源電壓下增加了放大器余量,降低了失真;或者可以用更低的電源電壓提供相同的信號(hào)擺幅,從而降低功耗。
圖2顯示了差分系統(tǒng)中固有的偶次諧波抵消。非線性器件,如本例中的單端和差分放大器,可以用給定正弦輸入信號(hào)時(shí)的冪級(jí)數(shù)擴(kuò)展傳遞函數(shù)來描述。在單端方案中,輸出的每個(gè)倍頻分量都有一個(gè)常數(shù),包括偶次和奇次頻率。在差分模塊中,偶次非線性在復(fù)合輸出響應(yīng)中被抵消。雖然實(shí)際器件不能實(shí)現(xiàn)完美的抵消功能,但它們確實(shí)可以因偶次諧波降低而受益。
圖3顯示了針對(duì)驅(qū)動(dòng)高速8位至16位ADC而優(yōu)化的超低失真、低噪聲差分放大器的諧波失真情況。圖中顯示了ADC器件被配置為單端和差分拓?fù)鋾r(shí)的二次和三次諧波。雖然單端模式下的失真非常低,100MHz時(shí)的HD2值為82dBc,但采用差分操作時(shí)的偶次性能更好,在相同頻率點(diǎn)HD2值低于100dBc。因此在相同電源軌條件下,采用差分拓?fù)涞恼麄€(gè)信號(hào)鏈的P1dB和IP3有望提高約6dB。
圖3:雖然單端模式中的失真性能很低,但差分操作對(duì)偶次性能來說確實(shí)有明顯的好處。在相同電源軌條件下,差分拓?fù)涞妮敵?dB壓縮點(diǎn)和IP3有望提高約6dB。
差分信號(hào)鏈
隨著接收機(jī)的發(fā)展,差分元器件得到了越來越廣泛的使用,它們能提供更高的性能等級(jí)。這種演進(jìn)最初始于ADC,并逐漸向信號(hào)鏈上游發(fā)展。
過去,信號(hào)應(yīng)用問題和有限的差分射頻構(gòu)建模塊導(dǎo)致人們只選用單端或部分差分信號(hào)鏈。部分差分信號(hào)鏈的一個(gè)例子是省去了差分ADC驅(qū)動(dòng)器,代之以單端器件和放大器來驅(qū)動(dòng)ADC。雖然這是一種簡(jiǎn)單的解決方案,但對(duì)性能的不斷追求要求更多的上游電路采用差分拓?fù)洹3讼母嗟墓耐?,單端?qū)動(dòng)放大器通常具有更差的偶次失真、CMR和PSR。
如圖1所示,接收機(jī)常用的架構(gòu)是單端射頻輸入和差分輸出。單端和差分操作之間的分界線似乎在混頻器那兒,像LNA等射頻元件仍是單端元件。大多數(shù)SAW濾波器和混頻器內(nèi)核是固有的差分電路,但根據(jù)應(yīng)用目的被轉(zhuǎn)換成了單端方式。
多年來,雙平衡混頻器拓?fù)溆捎谄涓呔€性度而廣泛用于蜂窩設(shè)備。遺憾的是,用于將信號(hào)耦合至混頻內(nèi)核的傳統(tǒng)變壓器網(wǎng)絡(luò)占用了相當(dāng)大的電路板面積,給設(shè)計(jì)增加了很大的成本。較新的射頻元件,如ADL535x混頻器系列,集成了巴倫和變壓器,并提供帶單端射頻輸入和差分中頻輸出的簡(jiǎn)單易用射頻模塊。
圖4表明所有三個(gè)混頻器端口內(nèi)部全部是差分結(jié)構(gòu)。為了方便作用,射頻和本振端口使用變壓器連接到外部,因此允許單端接口。相比之下,中頻輸出端口包含一個(gè)具有200Ω輸出阻抗的驅(qū)動(dòng)放大器,并采用差分方式以方便與差分SAW濾波器連接。本振和射頻巴倫的集成限制了混頻器的工作頻率,因此要求使用專門工作在蜂窩頻率范圍的器件系列。
圖4:集成射頻電路技術(shù)的最新發(fā)展允許設(shè)計(jì)師方便地使用具有單端射頻輸入至差分中頻輸出的混頻器。所有三個(gè)內(nèi)部混頻器端口都可以充分發(fā)揮差分優(yōu)勢(shì),同時(shí)更方便地與外部世界相連。
更多資訊請(qǐng)關(guān)注:21ic模擬頻道