當前位置:首頁 > 模擬 > 模擬
[導讀]這篇文章提供了對范例式集成比例型三線RTD測量系統的分析,以便了解誤差的來源,包括勵磁電流失配產生的影響。

這篇文章提供了對范例式集成比例型三線RTD測量系統的分析,以便了解誤差的來源,包括勵磁電流失配產生的影響。

集成式RTD測量電路

典型的集成式RTD測量解決方案包括勵磁電流、增益級、模數轉換器(ADC)和其它有用的功能,如開路傳感器檢測功能。與分立式系統相比,這些解決方案不僅可以大大簡化設計,同時還能實現高準確度。

具有24位Δ-Σ型ADC是整合了好幾種功能,以方便溫度測量應用的設計,ADC現代集成式解決方案的一個例子是ADS1220。在這種集成式解決方案中,用來控制勵磁電流的是電流輸出數模轉換器(DAC),也被稱為集成式DAC(IDAC)。為使IDAC到電阻式溫度檢測器RTD電路的布線更容易,該解決方案還包括一個多路復用器。最后,用可編程增益放大器(PGA)來提高RTD系統的電壓分辨率。圖1展示了使用集成式ADC解決方案的簡化電路原理圖。

圖1:集成式比例型三線RTD測量電路

RTD測量系統中誤差的來源

不管解決方案是集成式的還是分立內置式的,三線比例型RTD測量電路中的誤差源都相同。來自勵磁電流大小的誤差可以在比例測量中被消除。然而,由兩種勵磁電流的初始失配和溫度漂移引起的誤差卻能產生增益誤差。來自輸入增益級、ADC和RREF公差的誤差也可在最終測量結果中引起誤差。這些誤差會在最終測量結果里以偏移、增益或線性誤差的形式出現。

表1列出了能影響RTD測量的ADC誤差源。

表1:

由于到ADC的輸入是電壓,所以積分非線性(INL)誤差、增益誤差和IDAC失配誤差必須被轉換為輸入相關電壓。表2和表3詮釋了一個范例式系統。該系統用來計算作為輸入相關電壓的誤差。選擇電路的值超出了這些規(guī)定的范圍,這些在TI的參考設計TIPD120中得到了詳細的說明。

表2:范例式Pt100技術規(guī)格

表3:TIPD120的比例型電路配置

使用表3中的范例式電路配置,現在可認為誤差源與輸入相關,并可將誤差源與RTD電壓最大值(0.39048V)相比較。

PGA會產生輸入相關偏移電壓誤差 —— 該誤差可直接用于總誤差計算。

明確規(guī)定增益誤差要用滿量程范圍的百分率(也稱為%FSR)表示??赏ㄟ^方程式(2)增益誤差乘以RTD輸入電壓最大值來計算出輸入相關電壓誤差。

明確規(guī)定INL要用ADC滿量程范圍的百萬分率(ppm)表示。INL不是增益誤差。因此,必須讓它乘以ADC的滿量程輸入電壓,而不是RTD電壓最大值。用方程式(3)可計算出該配置中的滿量程輸入,用方程式(4)則可計算出輸入相關INL誤差。

明確規(guī)定IDAC失配要用%FSR表示。因此,可計算增益誤差及產生的輸入相關電壓誤差。這在下面的方程式(5)和方程式(6)中進行了展示。

來自RREF公差的誤差

最后一個重要的誤差源是RREF的公差,它會在ADC傳遞函數中產生增益誤差。憑借用來計算IDAC失配增益誤差的相同方法也可計算出RREF引起的增益誤差。方程式(7)展示了最終結果。

假設RREF公差被明確規(guī)定為0.05%,那么按方程式(8)所示可計算出增益誤差。用方程式(9)則可計算出輸入相關誤差。

 

在室溫(TA = 25°C)下的總誤差

表4列出了這個比例型三線RTD系統在環(huán)境溫度(TA)為25°C時所有誤差的匯總。使用輸入相關誤差電壓的平方和根值(RSS)可計算出最大或然誤差。IDAC失配在總或然誤差中所占比例大約為95%。

用方程式(10)可計算出總誤差。

 

 

表4:所有誤差的匯總

方程式(11)和方程式(12)展示了如何把表4中的總電壓誤差轉換為以歐姆為單位的誤差,并最終轉換為以攝氏度為單位的誤差。借助Pt100 RTD的靈敏度α,按IEC-60751標準所規(guī)定的,能把以歐姆為單位的誤差轉換為以攝氏度為單位的溫度誤差。

漂移誤差(TA = -40°C至85°C)

標準室溫校準技術可用來從系統中消除增益和偏移誤差,只留下線性誤差。但除非進行了過溫校準,否則溫度漂移技術規(guī)格仍會造成誤差。

表5展示了ADC的溫度漂移技術規(guī)格。在工作溫度范圍內,IDAC電流的溫度漂移是最大的誤差源。可通過技術消除IDAC失配漂移。但是,偏移和增益誤差漂移仍會存在,除非進行了過溫校準。

表5:-40°C至85°C溫度范圍內所有溫度漂移誤差的匯總

總漂移誤差主要是因IDAC失配漂移引起的;在-40°C至85°C的系統工作溫度范圍內,總漂移誤差還會另外產生±0.306℃的溫度誤差。

總結

在這部分,我們基于ADC的技術規(guī)格和外部組件分析了范例式比例型三線RTD測量系統的誤差。雖然比例型系統可從IDAC源的絕對值中消除誤差,但IDAC之間的任何失配和失配漂移均能產生誤差。在許多情況下,IDAC失配都是最大的誤差源。此外,IDAC失配漂移還是過溫誤差的最大促成因素。

之后我們將討論各種選項,以減少或消除由IDAC失配和失配漂移引起的誤差,只留下來自ADC的增益誤差、偏移電壓和INL誤差。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數據產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數據產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯合牽頭組建的NVI技術創(chuàng)新聯盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現場 NVI技術創(chuàng)新聯...

關鍵字: VI 傳輸協議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉