開(kāi)關(guān)電源電磁干擾機(jī)理及新的抑制方法介紹
掃描二維碼
隨時(shí)隨地手機(jī)看文章
摘要:開(kāi)關(guān)電源的電磁干擾對(duì)電子設(shè)備的性能影響很大,因此,各種標(biāo)準(zhǔn)對(duì)抑制電源設(shè)備電磁干擾的要求已越來(lái)越高。對(duì)開(kāi)關(guān)電源中電磁干擾的產(chǎn)生機(jī)理做了簡(jiǎn)要的描述,著重總結(jié)了幾種近年提出的新的抑制電磁干擾的方法,并對(duì)其原理、應(yīng)用做了簡(jiǎn)單介紹。
關(guān)鍵詞:開(kāi)關(guān)電源;電磁干擾;抑制
Mechanism of Electromagnetic Interference (EMI) in Switching
Power Supply and Several New Suppression Methods
LI Yi, LIN Long-feng, YIN Hua-jie
Abstract:Because the electromagnetic interference (EMI) in the switching power supply has great effects on electronics equipments,the standards and requirements on suppressing EMI in power supply are more and more strict. A brief introduction about the mechanism of EMI in switching power supply is given at first, and then the new EMI suppression methods are overviewed and summarized.
Keywords:Switching power supply; Electromagnetic interference; Suppression
1 引言
隨著電子設(shè)備的大量應(yīng)用,電源在這些設(shè)備中的地位越來(lái)越重要,而開(kāi)關(guān)變換器由于體積小、重量輕、效率高等特點(diǎn),在電源中占的比重越來(lái)越大。開(kāi)關(guān)電源大多工作在高頻情況下,在開(kāi)關(guān)器件的開(kāi)關(guān)過(guò)程中,寄生元件(如寄生電容、寄生電感等)中能量的高頻變化產(chǎn)生了大量的電磁干擾(Electromagnetic Interference,EMI)。
EMI信號(hào)占有很寬的頻率范圍,又有一定的幅度,經(jīng)過(guò)在電路、空間中的傳導(dǎo)和輻射,污染了周圍的電磁環(huán)境,影響了與其它電子設(shè)備的電磁兼容(Electromagnetic Compatibility)性。隨著近年來(lái)各國(guó)對(duì)電子設(shè)備的電磁干擾和電磁兼容性能要求的不斷提高,對(duì)電磁干擾以及新的抑制方法的研究已成為開(kāi)關(guān)電源研究中的熱點(diǎn)。
本文對(duì)電磁干擾產(chǎn)生、傳播的機(jī)理進(jìn)行了簡(jiǎn)要的介紹,重點(diǎn)總結(jié)了幾種近年來(lái)提出的抑制開(kāi)關(guān)電源電磁干擾產(chǎn)生及傳播的新方法。
2 電磁干擾的產(chǎn)生和傳播方式
開(kāi)關(guān)電源中的電磁干擾分為傳導(dǎo)干擾和輻射干擾兩種。通常傳導(dǎo)干擾比較好分析,可以將電路理論和數(shù)學(xué)知識(shí)結(jié)合起來(lái),對(duì)電磁干擾中各種元器件的特性進(jìn)行研究;但對(duì)輻射干擾而言,由于電路中存在不同干擾源的綜合作用,又涉及到電磁場(chǎng)理論,分析起來(lái)比較困難。下面將對(duì)這兩種干擾的機(jī)理作一簡(jiǎn)要的介紹。
2.1 傳導(dǎo)干擾的產(chǎn)生和傳播
傳導(dǎo)干擾可分為共模(Common Mode-CM)干擾和差模(Differential Mode-DM)干擾。由于寄生參數(shù)的存在以及開(kāi)關(guān)電源中開(kāi)關(guān)器件的高頻開(kāi)通與關(guān)斷,使得開(kāi)關(guān)電源在其輸入端(即交流電網(wǎng)側(cè))產(chǎn)生較大的共模干擾和差模干擾。
2.1.1 共模(CM)干擾
變換器工作在高頻情況時(shí),由于dv/dt很高,激發(fā)變壓器線圈間、以及開(kāi)關(guān)管與散熱片間的寄生電容,從而產(chǎn)生了共模干擾。如圖1所示,共模干擾電流從具有高dv/dt的開(kāi)關(guān)管出發(fā)流經(jīng)接地散熱片和地線,再由高頻LISN網(wǎng)絡(luò)(由兩個(gè)50Ω電阻等效)流回輸入線路。
圖1 典型開(kāi)關(guān)變換器中共模、差模干擾的傳播路徑
根據(jù)共模干擾產(chǎn)生的原理,實(shí)際應(yīng)用時(shí)常采用以下幾種抑制方法:
1)優(yōu)化電路器件布置,盡量減少寄生、耦合電容。
2)延緩開(kāi)關(guān)的開(kāi)通、關(guān)斷時(shí)間。但是這與開(kāi)關(guān)電源高頻化的趨勢(shì)不符。
3)應(yīng)用緩沖電路,減緩dv/dt的變化率。
2.2.2 差模(DM)干擾
開(kāi)關(guān)變換器中的電流在高頻情況下作開(kāi)關(guān)變化,從而在輸入、輸出的濾波電容上產(chǎn)生很高的di/dt,即在濾波電容的等效電感或阻抗上感應(yīng)了干擾電壓。這時(shí)就會(huì)產(chǎn)生差模干擾。故選用高質(zhì)量的濾波電容(等效電感或阻抗很低)可以降低差模干擾。
2.2 輻射干擾的產(chǎn)生和傳播
輻射干擾又可分為近場(chǎng)干擾〔測(cè)量點(diǎn)與場(chǎng)源距離<λ/6(λ為干擾電磁波波長(zhǎng))〕和遠(yuǎn)場(chǎng)干擾(測(cè)量點(diǎn)與場(chǎng)源距離>λ/6)。由麥克斯韋電磁場(chǎng)理論可知,導(dǎo)體中變化的電流會(huì)在其周圍空間中產(chǎn)生變化的磁場(chǎng),而變化的磁場(chǎng)又產(chǎn)生變化的電場(chǎng),兩者都遵循麥克斯韋方程式。而這一變化電流的幅值和頻率決定了產(chǎn)生的電磁場(chǎng)的大小以及其作用范圍。在輻射研究中天線是電磁輻射源,在開(kāi)關(guān)電源電路中,主電路中的元器件、連線等都可認(rèn)為是天線,可以應(yīng)用電偶極子和磁偶極子理論來(lái)分析。分析時(shí),二極管、開(kāi)關(guān)管、電容等可看成電偶極子;電感線圈可以認(rèn)為是磁偶極子,再以相關(guān)的電磁場(chǎng)理論進(jìn)行綜合分析就可以了。
圖2是一個(gè)Boost電路的空間分布圖,把元器件看成電偶極子或磁偶極子,應(yīng)用相關(guān)電磁場(chǎng)理論進(jìn)行分析,可以得出各元器件在空間的輻射電磁干擾,將這些干擾量迭加,就可以得到整個(gè)電路在空間產(chǎn)生的輻射干擾。關(guān)于電偶極子、磁偶極子,可參考相關(guān)的電磁場(chǎng)書籍,此處不再論述。
圖2 Bosst電路在三維空間的分布
需要注意的是,不同支路的電流相位不一定相同,在磁場(chǎng)計(jì)算時(shí)這一點(diǎn)尤其重要。相位不同一是因?yàn)楦蓴_從干擾源傳播到測(cè)量點(diǎn)存在時(shí)延作用(也稱遲滯效應(yīng));再一個(gè)原因是元器件本身的特性導(dǎo)致相位不同。如電感中電流相位比其它元器件要滯后。遲滯效應(yīng)引起的相位滯后是信號(hào)頻率作用的結(jié)果,僅在頻率很高時(shí)作用才較明顯(如GHz級(jí)或更高);對(duì)于功率電子器件而言,頻率相對(duì)較低,故遲滯效應(yīng)作用不是很大。
3 幾種新的電磁干擾抑制方法
在開(kāi)關(guān)電源產(chǎn)生的兩類干擾中,傳導(dǎo)干擾由于經(jīng)電網(wǎng)傳播,會(huì)對(duì)其它電子設(shè)備產(chǎn)生嚴(yán)重的干擾,往往引起更嚴(yán)重的問(wèn)題。常用的抑制方法有:緩沖器法,減少耦合路徑法,減少寄生元件法等。近年來(lái),隨著對(duì)電子設(shè)備電磁干擾的限制越來(lái)越嚴(yán)格,又出現(xiàn)了一些新的抑制方法,主要集中在新的控制方法與新的無(wú)源緩沖電路的設(shè)計(jì)等幾個(gè)方面。下面分別予以介紹。
3.1 新的控制方法—調(diào)制頻率控制
干擾是根據(jù)開(kāi)關(guān)頻率變化的,干擾的能量集中在這些離散的開(kāi)關(guān)頻率點(diǎn)上,所以很難滿足抑制EMI的要求。通過(guò)將開(kāi)關(guān)信號(hào)的能量調(diào)制分布在一個(gè)很寬的頻帶上,產(chǎn)生一系列的分立邊頻帶,則干擾頻譜可以展開(kāi),干擾能量被分成小份分布在這些分立頻段上,從而更容易達(dá)到EMI的標(biāo)準(zhǔn)。調(diào)制頻率(Modulated Frequency)控制就是根據(jù)這種原理實(shí)現(xiàn)對(duì)開(kāi)關(guān)電源電磁干擾的抑制。
最初人們采用隨機(jī)頻率(Randomized Frequency)控制[1],其主要思想是,在控制電路中加入一個(gè)隨機(jī)擾動(dòng)分量,使開(kāi)關(guān)間隔進(jìn)行不規(guī)則變化,則開(kāi)關(guān)噪聲頻譜由原來(lái)離散的尖峰脈沖噪聲變成連續(xù)分布噪聲,其 峰 值 大 大 下 降 。 具 體 辦 法 是 , 由 脈 沖 發(fā) 生 器 產(chǎn) 生 兩 種 不 同 占 空 比 的 脈 沖 , 再 與 電 壓 誤 差 放 大 器 產(chǎn) 生 的 誤 差 信 號(hào) 進(jìn) 行 采 樣 選 擇 產(chǎn) 生 最 終 的 控 制 信 號(hào) 。 其 具 體 的 控 制 波 形 如 圖3(a)所 示 。
(a) 隨機(jī)頻率控制原理波形圖
(b) 調(diào)制頻率控制原理波形圖
圖3 兩種不同的頻率調(diào)制波形
但是,隨機(jī)頻率控制在開(kāi)通時(shí)基本上采用PWM控制的方法,在關(guān)斷時(shí)才采用隨機(jī)頻率,因而其調(diào)制干擾能量的效果不是很好,抑制干擾的效果不是很理想。而最新出現(xiàn)的調(diào)制頻率控制則很好地解決了這些問(wèn)題。其原理是,將主開(kāi)關(guān)頻率進(jìn)行調(diào)制,在主頻帶周圍產(chǎn)生一系列的邊頻帶,從而將噪聲能量分布在很寬的頻帶上,降低了干擾。這種控制方法的關(guān)鍵是對(duì)頻率進(jìn)行調(diào)制,使開(kāi)關(guān)能量分布在邊頻帶的范圍,且幅值受調(diào)制系數(shù)β的影響(調(diào)制系數(shù)β=Δf/fm,Δf為相鄰邊頻帶間隔,fm為調(diào)制頻率),一般β越大調(diào)制效果越好[2][3],其控制波形如圖3(b)所示。
圖4即為一個(gè)根據(jù)調(diào)制頻率原理設(shè)計(jì)的控制電路。各種控制方法可以在不影響變換器工作特性的情況下,很好地抑制開(kāi)通、關(guān)斷時(shí)的干擾。
圖4 一個(gè)典型的調(diào)制頻率控制電路
3.2 新的無(wú)源緩沖電路設(shè)計(jì)
開(kāi)關(guān)變換器中電磁干擾是在開(kāi)關(guān)管開(kāi)關(guān)時(shí)刻產(chǎn)生的。以整流二極管為例,在開(kāi)通時(shí),其導(dǎo)通電流不僅引起大量的開(kāi)通損耗,還產(chǎn)生很大的di/dt,導(dǎo)致電磁干擾;而在關(guān)斷時(shí),其兩端的電壓快速升高,有很大的dv/dt,從而產(chǎn)生電磁干擾。緩沖電路不僅可以抑制開(kāi)通時(shí)的di/dt、限制關(guān)斷時(shí)的dv/dt,還具有電路簡(jiǎn)單、成本較低的特點(diǎn),因而得到了廣泛應(yīng)用。但是傳統(tǒng)的緩沖電路中往往采用有源輔助開(kāi)關(guān),電路復(fù)雜不易控制,并有可能導(dǎo)致更高的電壓或電流應(yīng)力,降低了可靠性。因此許多新的無(wú)源緩沖器應(yīng)運(yùn)而生,以下分別予以總結(jié)介紹。
3.2.1 二極管反向恢復(fù)電流抑制電路
對(duì)于圖5(a)的Boost電路,Q1開(kāi)通后,D1將關(guān)斷。但由于此前D1上的電流為工作電流,要降為零,其dv/dt將很高。D1的關(guān)斷只能靠反向恢復(fù)電流尖峰,而現(xiàn)有的抑制二極管反向恢復(fù)電流的方法大多只適用于特定的變換器電路,而且只對(duì)應(yīng)某一種的輸入輸出模式,適用性很差。國(guó)外有人提出了圖5(b)的電路[6],可以較好地解決這一缺陷。
圖5(b)的關(guān)鍵在于把一個(gè)輔助二極管(D2)、一個(gè)小的輔助電感(L2)與主功率電感(L1)的部分線圈串聯(lián),然后與主二極管(D1)并聯(lián)。其工作原理是,在Q1開(kāi)通時(shí),利用輔助電感及輔助二極管構(gòu)成的輔助電路進(jìn)行分流,使主二極管D1上的電流降為零,并維持到Q1關(guān)斷。由于電感L2的作用,輔助二極管D2上的反向恢復(fù)電流是很小的,可以忽略。
(a) Boost電路
(b) 二極管反向恢復(fù)電路
圖5 Boost電路及其二極管反向恢復(fù)電路
這種方法除了可用于一般的變換器電路,以限制主二極管的反向恢復(fù)電流,還可以用在輸入輸出整流二極管的恢復(fù)電流抑制上。圖6是這種應(yīng)用的舉例。這種技術(shù)應(yīng)用在一般的電源電路里,都可以獲得有效抑制反向恢復(fù)尖峰電流、降低EMI、減少損耗提高效率的效果。
(a) 輸入整流電路
(b) 輸出整流電路
圖6 輸入輸出整流二極管反向恢復(fù)電流抑制電路
3.2.2 無(wú)損緩沖電路
在變換器電路中,主二極管反向恢復(fù)時(shí),會(huì)對(duì)開(kāi)關(guān)管造成很大的電流、電壓應(yīng)力,引起很大的功耗,極易造成器件的損壞。為了抑制這種反向恢復(fù)電流,減少損耗,而提出了一種無(wú)損緩沖電路[5],如圖7所示。
圖7 無(wú)損緩沖電路
其主要工作原理是,主開(kāi)關(guān)Q開(kāi)通時(shí)的di/dt應(yīng)力、關(guān)斷時(shí)的dv/dt應(yīng)力分別受L1、C1所限制,利用L1、C1、C2之間相互的諧振及能量轉(zhuǎn)換,實(shí)現(xiàn)對(duì)主二極管D反向恢復(fù)電流的抑制,使開(kāi)關(guān)損耗、EMI大大減少。不僅如此,由于開(kāi)通時(shí)C1上的能量轉(zhuǎn)移到C2,關(guān)斷時(shí)C2和L1上的能量轉(zhuǎn)移到負(fù)載,這種緩沖電路的損耗很低,效率很高。
3.2.3 無(wú)源補(bǔ)償技術(shù)
傳統(tǒng)的共模干擾抑制電路如圖8所示。為了使通過(guò)濾波電容Cy流入地的漏電流維持在安全范圍,Cy的值都較小,相應(yīng)的扼流線圈LCM就變大,特別是由于LCM要傳輸全部的功率,其損耗、體積和重量都會(huì)變大。應(yīng)用無(wú)源補(bǔ)償技術(shù),則可以在不影響主電路工作的情況下,較好地抑制電路的共模干擾,并可減少LCM、節(jié)省成本。
圖8 共模干擾濾波器
由于共模干擾是由開(kāi)關(guān)器件的寄生電容在高頻時(shí)的dv/dt產(chǎn)生的,因此,用一個(gè)額外的變壓器繞組在補(bǔ)償電容上產(chǎn)生一個(gè)180°的反向電壓,產(chǎn)生的補(bǔ)償電流再與寄生電容上的干擾電流迭加,從而消除干擾。這就是無(wú)源補(bǔ)償?shù)脑怼?/span>
圖9(a)為加入補(bǔ)償電路的隔離式半橋電路。由于半橋、全橋電路常用于大功率場(chǎng)合,濾波電感LCM較大,所以補(bǔ)償?shù)男Ч麜?huì)更明顯。該電路在變壓器上加了一個(gè)補(bǔ)償線圈Nc,匝數(shù)與原邊繞組一樣;補(bǔ)償電容CCOMP的大小則與寄生電容CPARA一樣。這樣一來(lái),工作時(shí)的Nc使CCOMP產(chǎn)生一個(gè)與CPARA上干擾電流大小相同、方向相反的補(bǔ)償電流,迭加后消除了干擾電流。補(bǔ)償線圈不流過(guò)全部的功率,僅傳輸干擾電流,補(bǔ)償電路十分簡(jiǎn)單。
同樣,對(duì)于圖9(b)中的正激式電路,利用其自身的磁復(fù)位線圈,可以更加方便地實(shí)現(xiàn)補(bǔ)償。無(wú)源補(bǔ)償技術(shù)還可以應(yīng)用于非隔離式的變換器電路中,如圖10所示,原理是一樣的。
(b) 帶補(bǔ)償電路的正激電路
(a) 帶補(bǔ)償電路的隔離式半橋電路
圖9 兩種無(wú)源補(bǔ)償電路
(a) Boost電路
(b) Buck電路
圖10 帶補(bǔ)償電路的非隔離式Boost、Buck電路
需要注意的是,無(wú)源補(bǔ)償技術(shù)有一定的應(yīng)用條件,它受開(kāi)關(guān)電流、電壓的上升、下降時(shí)間,以及變壓器結(jié)構(gòu)等因素的影響,特別當(dāng)變壓器的線間耦合電容遠(yuǎn)大于寄生電容時(shí),干擾電流不經(jīng)補(bǔ)償線圈而直接進(jìn)入大地,此時(shí)抑制效果就不很理想。
4 結(jié)語(yǔ)
產(chǎn)生噪聲的來(lái)源很多,如外來(lái)干擾、機(jī)械振動(dòng)、電路設(shè)計(jì)不當(dāng)、元器件選擇不當(dāng)以及結(jié)構(gòu)布局或布線不合理等。在開(kāi)關(guān)變換器中,功率三極管和二極管在開(kāi)-關(guān)過(guò)程中所產(chǎn)生的射頻能量是干擾的主要來(lái)源之一。由于頻率較高,或以電磁能的形式直接向空間輻射(輻射干擾),或以干擾電流的形式沿著輸入、輸出導(dǎo)線傳送(傳導(dǎo)干擾),其中后者的危害更為嚴(yán)重。
開(kāi)關(guān)電源技術(shù)是一項(xiàng)綜合性技術(shù),可以利用先進(jìn)的半導(dǎo)體電路設(shè)計(jì)技術(shù)、磁性材料、電感元件技術(shù)以及開(kāi)關(guān)器件技術(shù)等來(lái)有效地減少和抑制EMI。目前,開(kāi)關(guān)電源已日益廣泛地應(yīng)用到各種控制設(shè)備、通信設(shè)備以及家用電器中,其電磁干擾問(wèn)題、及與其它電子設(shè)備的電磁兼容問(wèn)題已日益成為人們關(guān)注的熱點(diǎn),未來(lái)電磁干擾及其相關(guān)問(wèn)題必將得到更多的研究。