當前位置:首頁 > 工業(yè)控制 > 電子設計自動化
[導讀]高介電常數(shù)柵電介質(zhì)和金屬柵極技術(以下簡稱HKMG)使摩爾定律在45/32納米節(jié)點得以延續(xù)。目前的HKMG工藝有兩種主流整合方案,分別是“先柵極”和“后柵極”。“后柵極”又稱為可替換柵極(以下簡稱RMG),使用該工藝時高介電常數(shù)柵電介質(zhì)無需經(jīng)過高溫步驟,所以VT偏移很小,芯片的可靠性更高。

高介電常數(shù)柵電介質(zhì)和金屬柵極技術(以下簡稱HKMG)使摩爾定律在45/32納米節(jié)點得以延續(xù)。目前的HKMG工藝有兩種主流整合方案,分別是“先柵極”和“后柵極”。“后柵極”又稱為可替換柵極(以下簡稱RMG),使用該工藝時高介電常數(shù)柵電介質(zhì)無需經(jīng)過高溫步驟,所以VT偏移很小,芯片的可靠性更高。因此業(yè)界在制造高性能芯片時更傾向于選擇RMG工藝。然而,RMG工藝流程涉及更多的工藝步驟,面臨更多的工藝難關和設計限制。難關之一就是平坦度極難達標。

典型的RMG工藝流程依次包括(圖1):臨時多晶硅柵極結構的形成,第一層間電介質(zhì)(ILD0)氧化硅的沉積,ILD0化學機械研磨直至臨時多晶硅柵極完全曝露,刻蝕去除多晶硅柵極,功函數(shù)材料的淀積,金屬鋁的沉積,以及金屬鋁的化學機械研磨。作為RMG工藝流程步驟之一,ILD0化學機械研磨對于HKMG結構的順利形成至關重要。

由于柵極結構對尺寸控制要求非常嚴格(WIW和WID),如果缺少嚴格控制最終研磨厚度的工藝手段,將會帶來一系列的工藝整合問題,比如:柵極電阻波動,柵極填充不足,源/漏極曝露等等。這些問題最終都會損害芯片性能。為了確保芯片的優(yōu)良性能和可靠性,制造工藝必須嚴格控制WIW、WID以及WTW的厚度差異。

應用材料公司已經(jīng)成功研發(fā)出一套在Reflexion? LK機臺上實現(xiàn)的三步化學機械研磨工藝,以解決ILD0化學機械研磨過程中的WIW、WID和WTW厚度控制問題。第一步(P1),研磨移除大部分的ILD0電介質(zhì)材料;第二步(P2),采用FA繼續(xù)研磨,接觸到柵極區(qū)域氮化硅層后停止;第三步(P3),柵極區(qū)域的氮化硅層被徹底磨掉,多晶硅柵極完全曝露。圖2演示了在ILD0化學機械研磨過程中,溝槽區(qū)氧化硅研磨去除的全過程。

實驗細節(jié)

應用材料公司的Reflexion? LK研磨機臺包括一個FA研磨盤和兩個標準的旋轉(zhuǎn)式研磨漿研磨盤,使用可以控制5個獨立區(qū)域壓力的Titan ContourTM研磨頭(圖3)。FA研磨盤配有3M公司生產(chǎn)的SlurryFreeTM 固結磨料卷軸和SlurryFree P6900基底研磨墊。研磨漿研磨盤配有Dow Chemical公司生產(chǎn)的IC1010TM研磨墊和3M公司生產(chǎn)的研磨墊修復刷。P1使用Cabot公司生產(chǎn)的Semi-SperseR SS-12氧化硅研磨漿;P2使用FA研磨液;P3使用專用的研磨漿。

本文將統(tǒng)一使用一種簡化的柵極結構(圖4)以評估不同工藝的表現(xiàn)。柵極區(qū)域結構從上到下依次為:氧化硅/氮化硅/多晶硅/柵極氧化物/單晶硅,“溝槽”特指柵極與柵極之間的區(qū)域(結構為:氧化硅/單晶硅)。在尺寸大于50微米的測量區(qū),薄膜厚度的測量使用Nanometrics公司的NanoTM 9010b。而對柵極尺寸小于100納米的測量點,則需要通過掃描電子顯微鏡(SEM)進行縱切面觀測。本文中,一部分樣品通過機械劈裂的方式獲得晶圓縱切面;另一部分樣品使用聚焦離子束(FIB)局部切割晶圓露出縱切面。

結果與討論

P3需要無選擇性的研磨漿

因為P3之后的平坦度要求非常嚴格,P3的研磨傾向于使用無選擇性研磨漿。該研磨漿在氮化硅、氧化硅和多晶硅上都有可觀的磨率。首先,氮化硅的磨率必需足夠高才能保證多晶硅柵極完全曝露。如果氧化硅的研磨率顯著低于氮化硅和多晶硅,則可能導致溝槽區(qū)域明顯凸起,并隨著過度研磨而惡化。如果多晶硅的研磨率顯著低于氮化硅和氧化硅,那么柵極和溝槽之間的高度差會對研磨不足或過度研磨非常敏感。使用無選擇性的研磨漿將會減少由于P3研磨時間不同造成的柵極和溝槽之間的高度差變化。

P2 FA工藝可以降低P3之后溝槽氧化硅的WID厚度差異

FA工藝已被廣泛應用于直接研磨淺溝槽隔離(STI)。FA可以選擇性的停在氮化硅表面,并展現(xiàn)出優(yōu)異的研磨平坦度和低的凹缺陷。與STI類似,ILD0的研磨也包括停在氮化硅表面的步驟。這種極低氮化硅損失和極低氧化硅凹缺陷的工藝特點使得FA成為ILD0研磨工藝中WIW和WID厚度控制的關鍵。在柵極密集區(qū),由于特征尺寸很小,不論使用FA工藝還是高選擇性的研磨漿(HSS)研磨工藝,凹缺陷一般都比較低(圖5)。然而在外圍區(qū)域,特征尺寸可能達到50微米以上,HSS研磨工藝一般都會產(chǎn)生明顯的凹缺陷(>200?),而FA研磨工藝仍能保持低凹缺陷(<50?)。

因此,對比FA工藝和HSS工藝研磨后的溝槽氧化硅WID厚度差異,前者明顯低于后者。由于P3使用無選擇性的研磨漿,P2之后的高凹缺陷就會直接導致P3之后的溝槽氧化硅WID厚度差異也很高(圖5)。從晶圓縱切面的SEM照片中可以清楚的看出P3之后的WID厚度差異。

FA優(yōu)異的平坦度和凹缺陷表現(xiàn)

與HSS工藝相比,F(xiàn)A工藝能夠明顯降低溝槽氧化硅的WID厚度差異和凹缺陷,尤其在大特征尺寸區(qū)域。與此同時,F(xiàn)A過度研磨不會顯著降低WIW和WID表現(xiàn)(圖7)。圖6對比了FA和HSS工藝在不同特征尺寸下的凹缺陷表現(xiàn)。當特征尺寸達到50微米時,凹缺陷的表現(xiàn)就會有明顯差異。FA優(yōu)異的凹缺陷表現(xiàn)使其成為RMG ILD0化學機械研磨工藝的關鍵步驟。

 

P2對于P3工藝的影響

圖8-11中,所有SEM照片的拍攝角度均為45度。晶圓縱切面通過FIB切割方式獲得。所有的照片使用相同的比例尺。圖8比較了P2用HSS工藝研磨后的柵極密集區(qū)和200×200微米測量點的溝槽氧化硅厚度。柵極密集區(qū)和大尺寸測量區(qū)的厚度明顯不同,表明存在顯著的WID差異。P3的無選擇性研磨漿工藝將很難修復P2造成的WID差異。如圖9所示,如果P2使用HSS工藝,柵極密集區(qū)和大尺寸測量區(qū)的溝槽氧化硅厚度差異在P3之后仍然會很高。

相對于HSS,F(xiàn)A研磨后的WID厚度差很小。圖10顯示溝槽氧化硅在密集區(qū)和大尺寸測量區(qū)的厚度非常接近。這種低WID差異會被進一步保留至無選擇性的P3之后(圖11)。上述對比顯示,F(xiàn)A有能力解決線路密度和尺寸不同造成的平坦度挑戰(zhàn),從而減少芯片設計規(guī)則中對于線路密度的限制。

用FullVision控制多晶硅厚度

持續(xù)穩(wěn)定的多晶硅厚度控制是通過FullVision實時終點控制系統(tǒng)來實現(xiàn)的。該系統(tǒng)的可靠性和可重復性已在實際生產(chǎn)中得到證明。圖12顯示出FullVision終點控制系統(tǒng)的強大功能。在圖12中,晶圓A和B都使用標準P3工藝研磨,并利用FullVision控制研磨終點;晶圓C和D的P3磨率低于標準磨率10%;晶圓C通過FullVision控制研磨終點,而晶圓D的研磨時間與晶圓A和B的研磨時間相同。上述四片晶圓的P1和P2研磨條件完全相同。

FullVision自動調(diào)整晶圓C的研磨時間來補償P3磨率的下降。因此,晶圓A、B和C在P3之后的柵極多晶硅厚度差異小于5?。由于晶圓D沒有使用FullVision終點偵測控制系統(tǒng),而是使用與晶圓A相同的研磨時間進行研磨,因此晶圓D在P3之后的柵極多晶硅厚度與標準工藝條件的平均厚度相差高達25。

使用無選擇性的P3研磨漿會使工藝本身對P3磨率隨研磨墊壽命的偏移以及上游步驟工藝的變化(比如氮化硅厚度改變,P2過度研磨程度等)非常敏感。FullVision可以通過自動調(diào)節(jié)研磨時間來應對生產(chǎn)過程中各種無法預測的偏移,從而確保穩(wěn)定的WTW表現(xiàn)。

無論是在柵極密集區(qū)還是在大尺寸測量區(qū),圖13中的SEM縱切面圖片都展示出均一的表面形貌。

結論

良好的WID、WIW和WTW厚度控制是制造基于HKMG技術的高性能邏輯芯片的關鍵。ILD0化學機械研磨工藝利用FA對不同尺寸大小和密度的芯片結構均提供優(yōu)異的表面形貌和平坦度控制,并且通過使用FullVision實時終點控制系統(tǒng)進一步確保穩(wěn)定的WTW厚度控制。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉