當前位置:首頁 > 單片機 > 單片機
[導(dǎo)讀]對于剛?cè)腴T的新手,我想這幾個概念是必須得搞清楚的,平時接觸的最多的也就是推挽輸出、開漏輸出、上拉輸入這三種,但一直未曾對這些做過歸納。因此,在這里做一個總結(jié)

(1)GPIO_Mode_AIN 模擬輸入

(2)GPIO_Mode_IN_FLOATING 浮空輸入

(3)GPIO_Mode_IPD 下拉輸入

(4)GPIO_Mode_IPU 上拉輸入

(5)GPIO_Mode_Out_OD 開漏輸出

(6)GPIO_Mode_Out_PP 推挽輸出

(7)GPIO_Mode_AF_OD 復(fù)用開漏輸出

(8)GPIO_Mode_AF_PP 復(fù)用推挽輸出

對于剛?cè)腴T的新手,我想這幾個概念是必須得搞清楚的,平時接觸的最多的也就是推挽輸出、開漏輸出、上拉輸入這三種,但一直未曾對這些做過歸納。因此,在這里做一個總結(jié):

推挽輸出:可以輸出高,低電平,連接數(shù)字器件; 推挽結(jié)構(gòu)一般是指兩個三極管分別受兩互補信號的控制,總是在一個三極管導(dǎo)通的時候另一個截止。高低電平由IC的電源低定。

推挽電路是兩個參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負責(zé)正負半周的波形放大任務(wù),電路工作時,兩只對稱的功率開關(guān)管每次只有一個導(dǎo)通,所以導(dǎo)通損耗小、效率高。輸出既可以向負載灌電流,也可以從負載抽取電流。推拉式輸出級既提高電路的負載能力,又提高開關(guān)速度。

詳細理解:

推挽放大器的輸出級有兩個“臂”(兩組放大元件),一個“臂”的電流增加時,另一個“臂”的電流則減小,二者的狀態(tài)輪流轉(zhuǎn)換。對負載而言,好像是一個“臂”在推,一個“臂”在拉,共同完成電流輸出任務(wù)。當輸出高電平時,也就是下級負載門輸入高電平時,輸出端的電流將是下級門從本級電源經(jīng)VT3拉出。這樣一來,輸出高低電平時,VT3 一路和 VT5 一路將交替工作,從而減低了功耗,提高了每個管的承受能力。又由于不論走哪一路,管子導(dǎo)通電阻都很小,使RC常數(shù)很小,轉(zhuǎn)變速度很快。因此,推拉式輸出級既提高電路的負載能力,又提高開關(guān)速度。

開漏輸出:輸出端相當于三極管的集電極. 要得到高電平狀態(tài)需要上拉電阻才行. 適合于做電流型的驅(qū)動,其吸收電流的能力相對強(一般20ma以內(nèi)).

開漏形式的電路有以下幾個特點:

1. 利用外部電路的驅(qū)動能力,減少IC內(nèi)部的驅(qū)動。當IC內(nèi)部MOSFET導(dǎo)通時,驅(qū)動電流是從外部的VCC流經(jīng)R pull-up ,MOSFET到GND。IC內(nèi)部僅需很下的柵極驅(qū)動電流。

2. 一般來說,開漏是用來連接不同電平的器件,匹配電平用的,因為開漏引腳不連接外部的上拉電阻時,只能輸出低電平,如果需要同時具備輸出高電平的功能,則需要接上拉電阻,很好的一個優(yōu)點是通過改變上拉電源的電壓,便可以改變傳輸電平。比如加上上拉電阻就可以提供TTL/CMOS電平輸出等。(上拉電阻的阻值決定了邏輯電平轉(zhuǎn)換的沿的速度 。阻值越大,速度越低功耗越小,所以負載電阻的選擇要兼顧功耗和速度。)

3. OPEN-DRAIN提供了靈活的輸出方式,但是也有其弱點,就是帶來上升沿的延時。因為上升沿是通過外接上拉無源電阻對負載充電,所以當電阻選擇小時延時就小,但功耗大;反之延時大功耗小。所以如果對延時有要求,則建議用下降沿輸出。

4. 可以將多個開漏輸出的Pin,連接到一條線上。通過一只上拉電阻,在不增加任何器件的情況下,形成“與邏輯”關(guān)系。這也是I2C,SMBus等總線判斷總線占用狀態(tài)的原理。補充:什么是“線與”?:

在一個結(jié)點(線)上, 連接一個上拉電阻到電源 VCC 或 VDD 和 n 個 NPN 或 NMOS 晶體管的集電極 C 或漏極 D, 這些晶體管的發(fā)射極 E 或源極 S 都接到地線上, 只要有一個晶體管飽和, 這個結(jié)點(線)就被拉到地線電平上. 因為這些晶體管的基極注入電流(NPN)或柵極加上高電平(NMOS), 晶體管就會飽和, 所以這些基極或柵極對這個結(jié)點(線)的關(guān)系是或非 NOR 邏輯. 如果這個結(jié)點后面加一個反相器, 就是或 OR 邏輯.

其實可以簡單的理解為:在所有引腳連在一起時,外接一上拉電阻,如果有一個引腳輸出為邏輯0,相當于接地,與之并聯(lián)的回路“相當于被一根導(dǎo)線短路”,所以外電路邏輯電平便為0,只有都為高電平時,與的結(jié)果才為邏輯1。

關(guān)于推挽輸出和開漏輸出,最后用一幅最簡單的圖形來概括:

該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時下面的PNP三極管截止,而上面NPN三極管導(dǎo)通,輸出電平VS+;當比較器輸出低電平時則恰恰相反,PNP三極管導(dǎo)通,輸出和地相連,為低電平。右邊的則可以理解為開漏輸出形式,需要接上拉。

浮空輸入:對于浮空輸入,一直沒找到很權(quán)威的解釋,只好從以下圖中去理解了

由于浮空輸入一般多用于外部按鍵輸入,結(jié)合圖上的輸入部分電路,我理解為浮空輸入狀態(tài)下,IO的電平狀態(tài)是不確定的,完全由外部輸入決定,如果在該引腳懸空的情況下,讀取該端口的電平是不確定的。

上拉輸入/下拉輸入/模擬輸入:這幾個概念很好理解,從字面便能輕易讀懂。

復(fù)用開漏輸出、復(fù)用推挽輸出:可以理解為GPIO口被用作第二功能時的配置情況(即并非作為通用IO口使用)

最后總結(jié)下使用情況:

在STM32中選用IO模式

(1) 浮空輸入_IN_FLOATING ——浮空輸入,可以做KEY識別,RX1

(2)帶上拉輸入_IPU——IO內(nèi)部上拉電阻輸入

(3)帶下拉輸入_IPD—— IO內(nèi)部下拉電阻輸入

(4) 模擬輸入_AIN ——應(yīng)用ADC模擬輸入,或者低功耗下省電

(5)開漏輸出_OUT_OD ——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實現(xiàn)輸出高電平。當輸出為1時,IO口的狀態(tài)由上拉電阻拉高電平,但由于是開漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔儭?梢宰xIO輸入電平變化,實現(xiàn)C51的IO雙向功能

(6)推挽輸出_OUT_PP ——IO輸出0-接GND, IO輸出1 -接VCC,讀輸入值是未知的

(7)復(fù)用功能的推挽輸出_AF_PP ——片內(nèi)外設(shè)功能(I2C的SCL,SDA)

(8)復(fù)用功能的開漏輸出_AF_OD——片內(nèi)外設(shè)功能(TX1,MOSI,MISO.SCK.SS)

STM32設(shè)置實例:

(1)模擬I2C使用開漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以讀IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);

(2)如果是無上拉電阻,IO默認是高電平;需要讀取IO的值,可以使用帶上拉輸入_IPU和浮空輸入_IN_FLOATING和開漏輸出_OUT_OD;

一、GPIO配置

(1)GPIO_Mode_AIN 模擬輸入

(2)GPIO_Mode_IN_FLOATING 浮空輸入

(3)GPIO_Mode_IPD 下拉輸入

(4)GPIO_Mode_IPU 上拉輸入

(5)GPIO_Mode_Out_OD 開漏輸出

(6)GPIO_Mode_Out_PP 推挽輸出

(7)GPIO_Mode_AF_OD 復(fù)用開漏輸出

(8)GPIO_Mode_AF_PP 復(fù)用推挽輸出

GPIO_Speed_10MHz 最高輸出速率10MHz

GPIO_Speed_2MHz 最高輸出速率2MHz

GPIO_Speed_50MHz 最高輸出速率50MHz1.1 I/O口的輸出模式下,有3種輸出速度可選(2MHz、10MHz和50MHz),這個速度是指I/O口驅(qū)動電路的響應(yīng)速度而不是輸出信號的速度,輸出信號的速度與程序有關(guān)(芯片內(nèi)部在I/O口 的輸出部分安排了多個響應(yīng)速度不同的輸出驅(qū)動電路,用戶可以根據(jù)自己的需要選擇合適的驅(qū)動電路)。通過選擇速度來選擇不同的輸出驅(qū)動模塊,達到最佳的噪聲 控制和降低功耗的目的。高頻的驅(qū)動電路,噪聲也高,當不需要高的輸出頻率時,請選用低頻驅(qū)動電路,這樣非常有利于提高系統(tǒng)的EMI性能。當然如果要輸出較高頻率的信號,但卻選用了較低頻率的驅(qū)動模塊,很可能會得到失真的輸出信號。關(guān)鍵是GPIO的引腳速度跟應(yīng)用匹配(推薦10倍以上?)。比如:

1.1.1 對于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引腳速度就夠了,既省電也噪聲小。

1.1.2 對于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引腳速度或許不夠,這時可以選用10M的GPIO引腳速度。

1.1.3 對于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引腳速度顯然不夠了,需要選用50M的GPIO的引腳速度。

1.2 GPIO口設(shè)為輸入時,輸出驅(qū)動電路與端口是斷開,所以輸出速度配置無意義。

1.3 在復(fù)位期間和剛復(fù)位后,復(fù)用功能未開啟,I/O端口被配置成浮空輸入模式。

1.4 所有端口都有外部中斷能力。為了使用外部中斷線,端口必須配置成輸入模式。

1.5 GPIO口的配置具有上鎖功能,當配置好GPIO口后,可以通過程序鎖住配置組合,直到下次芯片復(fù)位才能解鎖。2、推挽輸出與開漏輸出的區(qū)別推挽輸出:可以輸出高,低電平,連接數(shù)字器件;開漏輸出:輸出端相當于三極管的集電極. 要得到高電平狀態(tài)需要上拉電阻才行. 適合于做電流型的驅(qū)動,其吸收電流的能力相對強(一般20ma以內(nèi)).

推挽結(jié)構(gòu)一般是指兩個三極管分別受兩互補信號的控制,總是在一個三極管導(dǎo)通的時候另一個截止.

要實現(xiàn) 線與 需要用OC(open collector)門電路.是兩個參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負責(zé)正負半周的波形放大任務(wù),電路工作時,兩只對稱的功率開關(guān)管每次只有一個導(dǎo)通,所以導(dǎo)通損耗小,效率高。輸出既可以向負載灌電流,也可以從負載抽取電流當端口配置為輸出時:

開漏模式:輸出 0 時,N-MOS 導(dǎo)通,P-MOS 不被激活,輸出0。

輸出 1 時,N-MOS 高阻, P-MOS 不被激活,輸出1(需要外部上拉電路);此模式可以把端口作為雙向IO使用。

推挽模式:輸出 0 時,N-MOS 導(dǎo)通,P-MOS 高阻 ,輸出0。

輸出 1 時,N-MOS 高阻,P-MOS 導(dǎo)通,輸出1(不需要外部上拉電路)。簡單來說開漏是0的時候接GND 1的時候浮空 推挽是0的時候接GND 1的時候接VCC3、在STM32中選用IO模式

(1) 浮空輸入_IN_FLOATING ——浮空輸入,可以做KEY識別,RX1

(2)帶上拉輸入_IPU——IO內(nèi)部上拉電阻輸入

(3)帶下拉輸入_IPD—— IO內(nèi)部下拉電阻輸入

(4) 模擬輸入_AIN ——應(yīng)用ADC模擬輸入,或者低功耗下省電

(5)開漏輸出_OUT_OD ——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實現(xiàn)輸出高電平。當輸出為1時,IO口的狀態(tài)由上拉電阻拉高電平,但由于是開漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔? ??梢宰xIO輸入電平變化,實現(xiàn)C51的IO雙向功能

(6)推挽輸出_OUT_PP ——IO輸出0-接GND, IO輸出1 -接VCC,讀輸入值是未知的

(7)復(fù)用功能的推挽輸出_AF_PP ——片內(nèi)外設(shè)功能(I2C的SCL,SDA)

(8)復(fù)用功能的開漏輸出_AF_OD——片內(nèi)外設(shè)功能(TX1,MOSI,MISO.SCK.SS)實例總結(jié):(1)模擬I2C使用開漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時先

GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以讀IO的值;使用

GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);(2)如果是無上拉電阻,IO默認是高電平;需要讀取IO的值,可以使用

帶上拉輸入_IPU和浮空輸入_IN_FLOATING和 開漏輸出_OUT_OD;4、IO低功耗:關(guān)于模擬輸入&低功耗,根據(jù)STM32的低功耗AN(AN2629)及其源文件,在STOP模式下,為了得到盡量低的功耗,確實把所有的IO(包括非A/D輸入的GPIO)都設(shè)置為模擬輸入5、程序(1)時鐘:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOC, ENABLE);(2)IO配置:

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; // IR 輸入

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;GPIO_Init(GPIOC, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_15;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_Init(GPIOB, &GPIO_InitStructure);(3)輸出輸入:輸出0:GPIO_ResetBits(GPIOB, GPIO_Pin_0)

輸出1:GPIO_SetBits(GPIOB, GPIO_Pin_0)

輸入: GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_7)

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉