當前位置:首頁 > 醫(yī)療電子 > 醫(yī)療電子
[導讀]1 引言20世紀90年代以來,伴隨著各種基因組測序計劃的展開和分子結(jié)構(gòu)測定技術(shù)的突破,數(shù)以百計的生物學數(shù)據(jù)庫如雨后春筍般迅速出現(xiàn)和成長。如何利用這些不斷爆炸性增長的有關(guān)生物分子的原始數(shù)據(jù),有效解決基因識別問

1 引言

20世紀90年代以來,伴隨著各種基因組測序計劃的展開和分子結(jié)構(gòu)測定技術(shù)的突破,數(shù)以百計的生物學數(shù)據(jù)庫如雨后春筍般迅速出現(xiàn)和成長。如何利用這些不斷爆炸性增長的有關(guān)生物分子的原始數(shù)據(jù),有效解決基因識別問題顯得越來越迫切。最初的基因分析方法是進行簡單的核苷酸統(tǒng)計,而后加上剪切保守位點的檢測。以后采用了人工神經(jīng)網(wǎng)絡、隱馬爾科夫模型HMM)[1,2]等先進的信息處理和分析技術(shù),提高基因識別的準確率。但由于生物信息數(shù)據(jù)量巨大,傳統(tǒng)的串行算法往往無法處理或難以在滿意的時間內(nèi)得到結(jié)果。本文針對基因序列的識別,討論隱馬爾科夫模型分析算法的并行算法設計和并行效果分析。

2 隱馬爾科夫模型法

隱馬爾科夫模型[3](Hidden Markov Models,HMM)是一種概率論模型,這種方法已經(jīng)成功應用于多個領域,如語音識別、光學字符識別等。HMM在生物信息學領域中也有著重要的應用,如序列分析、基因識別等。目前,基因識別的HMM方法也大致可以分為兩類,一類為按照內(nèi)容搜索的方法,通過核苷酸和三聯(lián)密碼子等在編碼區(qū)的分布規(guī)律來界定蛋白質(zhì)的編碼區(qū);另一類為按照信號搜索的方法,通過編碼區(qū)周圍的信號界定蛋白質(zhì)編碼區(qū)。

 

2.1 馬爾科夫鏈

考慮只取有限個或可數(shù)個狀態(tài)的隨機過程{Xn,n=0,1,2,…},假設對一切狀態(tài)i0,i1,…,in-1,i,j和一切n≥0,有P{Xn+1=j | Xn=i,Xn-1=in-1,…,X1=i1,X0=i0} = P{Xn+1=j | Xn=i}成立,則稱此隨機過程為離散狀態(tài)馬爾科夫鏈。簡單的說,就是系統(tǒng)未來的狀態(tài)僅依賴于當前狀態(tài)。一個馬爾科夫鏈的概率分布完全由它的初始分布P(X0)與轉(zhuǎn)移矩陣P=(pij)決定。

2.2  HMM基本原理

隱馬爾科夫模型HMM是由馬爾科夫鏈發(fā)展擴充而來的一種隨機模型。HMM可以被理解為一個雙重隨機過程,一個是不可觀察的(隱含的)狀態(tài)變化序列,另一個是由該不可觀察的狀態(tài)產(chǎn)生的可觀察符號序列。隱馬爾科夫模型形式描述如下:一個HMM模型是一個三元組M=(A,S,Q),其中A是字母表,S是有限狀態(tài)集合,每個狀態(tài)可以釋放字母表中的字符。Q為概率集合,包括兩個部分:一是狀態(tài)轉(zhuǎn)換概率fkl,k,l∈S,表示從狀態(tài)k轉(zhuǎn)化到狀態(tài)l的概率;二是字符釋放概率,記為ek(b) (k∈S,b∈A),表示在狀態(tài)k下釋放出字符b的概率。令路徑Π=(π1,π2,…,πL )是模型M的一個相繼狀態(tài)序列,X=(x1,x2,…,xL)是一個字符序列,按下述方式定義狀態(tài)轉(zhuǎn)換概率和字符釋放概率:

fkl = p(πi = l|πi-1 = k)

ek(b) = p(xi=b|πi= k)

對于給定的路徑Π,可以按下面的公式計算出產(chǎn)生序列X的概率:

P(X|Π)= fπ0,π1 eπi (xi)fπi,πi+1

這里,令π0為起始狀態(tài),πi+1為終止狀態(tài)。

在表示或分析HMM模型時,用方框表示各個狀態(tài),方框之間的連線表示狀態(tài)轉(zhuǎn)換。對于每個狀態(tài),詳細地描述各個字符的釋放概率,而對于狀態(tài)之間的轉(zhuǎn)換,也給出相應轉(zhuǎn)換動作發(fā)生的概率,即狀態(tài)轉(zhuǎn)換概率。表示DNA序列的HMM如圖1所示。

對生物序列而言,HMM的字符就是20個字母的氨基酸或4個字母的核苷酸。編碼蛋白質(zhì)的原始DNA序列,在生物的進化過程中會受到自然環(huán)境和各種因素的影響,使翻譯出的蛋白質(zhì)序列[4]經(jīng)歷突變、遺失或引入外援序列等變化,最后按不同的進化路徑分化,形成多種功能相近的蛋白質(zhì)。因此,可以把這些蛋白質(zhì)看作由一個基本蛋白質(zhì)序列經(jīng)過插入、刪除或替換了某些氨基酸殘基而形成。這個過程可以用HMM來表示。一個訓練好的模型可以代表有共同特征的蛋白質(zhì)序列。HMM用于分析蛋白質(zhì)序列的原理是分析蛋白質(zhì)產(chǎn)生不同序列的概率,對于與模型相符合的序列,能以較大的概率產(chǎn)生。

圖1  隱馬爾科夫模型

3  并行算法

對于給定一個隱馬爾科夫模型M=(A,S,Q)和一個字符序列X(即基因序列),在M中尋找產(chǎn)生該序列的最優(yōu)路徑Π*,該路徑從起始狀態(tài)出發(fā),結(jié)束于終止狀態(tài),在路徑中的每一個狀態(tài)都選擇釋放一個字符,使P(X|Π*)最大。這是基因識別中常用的一個方法,這里我們設計采用并行算法來求解HMM的最優(yōu)路徑問題。

給定一個字符序列X=(x1,x2,…,xL),以vk(i)代表序列前綴(x1,x2,…,xL)終止于k(k∈S,1≤i≤L)的最可能路徑的概率。求解過程如下:

(1)初始化  vbegin(0)=1

k≠begin vk(0) = 0

(2)對于每個i=0,1,…,L-1及每個l∈S,按下式進行遞歸計算

vl(i+1) = el(xi+1)max{vk(i)fkl}  k∈S

(3)最后,計算序列X終止于狀態(tài)“end”最可能的路徑概率,即P(X|Π*)的值

P(X|Π*) = max{vk(L)fk,end}  k∈S

在實現(xiàn)中我們將隱馬爾科夫模型使用一顆狀態(tài)空間樹及一個字符釋放概率矩陣聯(lián)合表示。如圖2所示。

圖2  HMM的聯(lián)合表示

采用并行深度優(yōu)先搜索技術(shù),在每一個前向分支處啟動一個新的進程,并行的計算多計算分支。在單CPU的情況下,算法的時間復雜度為O(L|S|2),在具有N個計算節(jié)點的情況下,算法的時間復雜度為O(L|S|2/N)。

在理想的情況下,并行算法在理論上的加速比與計算節(jié)點數(shù)成正比。在大型基因結(jié)構(gòu)識別的問題域中,為實現(xiàn)并行計算而產(chǎn)生額外的啟動、通信等時間與有效計算時間相比基本可以忽略,可近似達到理想加速比。

4  結(jié)束語

中國科學院院士張春霆指出生物信息學是生物學的核心和靈魂,數(shù)學與計算機技術(shù)則是它的基本工具。只有將并行計算研究和基因識別的理論研究有效聯(lián)系起來,在研究蛋白質(zhì)結(jié)構(gòu)預測與分析的方法基礎上,結(jié)合并行計算技術(shù)的特點,設計一系列的高效并行實現(xiàn)技術(shù),實現(xiàn)高效、快速的基因識別,生物信息計算才能得到更快的發(fā)展。

參考文獻

[1] Eddy SR.Profile hidden Markov models.Bioinformatics,1998,14(9):755-763

[2] Richard D,Eddy SR,Anders K.Biological Sequence Analysis.Beijing:Tsinghua University Press,2002.46-79(in Chinese)

[3] 陳軍,趙文輝,莫則堯,李曉梅.基因序列分析軟件Hmmpfam的可擴展并行性能優(yōu)化[J].軟件學報,2004,(02),170-178

[4] 張春霆.生物信息學研究內(nèi)容與展望[J].遼寧科技參考,2001,(08),25-26

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉