當(dāng)前位置:首頁 > 顯示光電 > 顯示光電
[導(dǎo)讀]引言自1991 年GaN 藍光LED 面世后,GaN 基LED近幾年來發(fā)展迅速。目前,高效率GaN 基LED 已經(jīng)被廣泛地用于全彩顯示屏、固態(tài)照明、液晶顯示器背光源等方面。LED 以其壽命長、耗電小、環(huán)保、耐沖擊、抗震等優(yōu)點,LED 照

引言

自1991 年GaN 藍光LED 面世后,GaN 基LED近幾年來發(fā)展迅速。目前,高效率GaN 基LED 已經(jīng)被廣泛地用于全彩顯示屏、固態(tài)照明、液晶顯示器背光源等方面。LED 以其壽命長、耗電小、環(huán)保、耐沖擊、抗震等優(yōu)點,LED 照明市場增長快速[1]。但是,由于在半導(dǎo)體和空氣之間折射率的差異造成的全反射而導(dǎo)致LED 表面的光提取效率較低[2,3],典型的GaN 半導(dǎo)體材料折射率為2. 5,由全反射定律得知,光線從半導(dǎo)體逸出到空氣中全反射角的臨界值為24°角[4],故大于24°的光線都無法從半導(dǎo)體材料中逸出。因此,全反射在很大程度上影響了LED 的光提取效率。因此,如何減少全反射,改善LED 的光提取效率成為如今研究熱點之一[5]。本文主要介紹了對LED 芯片表面或芯片內(nèi)部的幾種微結(jié)構(gòu)的加工,它們都能夠起到提高LED 出光效率的作用。

1 LED 表面微結(jié)構(gòu)技術(shù)

傳統(tǒng)的GaN 基LED 是利用化學(xué)氣相沉積( MOCVD) 技術(shù)在560°C 左右的藍寶石基底上分別沉積摻雜Si 的n 型GaN 材料和摻雜Mg 的p 型GaN材料,兩種材料之間形成量子阱( MQW) 。在p 型GaN 材料上再鍍上一層ITO 膜( 氧化銦錫) ,該金屬氧化物透明導(dǎo)電膜作為透明電極,其作用是增強電極出光亮度以及隔離芯片中發(fā)射的對人類有害的電子輻射、紫外線及遠紅外線等[6]。LED 的基本結(jié)構(gòu)如圖1 所示。

 

 

清華大學(xué)的張賢鵬等人[8]采用基于Cl2 /Ar /

BCl3氣體的感應(yīng)耦合等離子體( ICP) 刻蝕技術(shù)制作了p-GaN 表面具有直徑3μm、周期6μm 的微結(jié)構(gòu)。該微結(jié)構(gòu)將GaN 基藍光LED 芯片的光熒光效果提高了42. 8%,并且在LED 器件注入電流為20mA 的情況下,將芯片正面出光效率提高了38%,背面出光效率提高了10. 6%。

加州大學(xué)的Schnitzer 等[7]對LED 芯片進行表面微結(jié)構(gòu)處理的做法是利用自然光刻法將LED 芯片的出光表面做一個粗糙化處理,使得LED 芯片的出光表面變得粗糙不均勻,粗糙化后的芯片結(jié)構(gòu)如圖2 所示。如圖3 所示,當(dāng)光波傳遞到不均勻表面時,由于粗糙表面的光散射,這樣,半導(dǎo)體內(nèi)更多的光可以傳播到空氣中。粗糙化的LED 芯片其出光效率可以達到約16. 8%,而一般的環(huán)氧樹脂封裝LED 的光取出效率非常低,僅能達到4% 左右[1]。粗糙化后的LED 芯片結(jié)構(gòu)在SEM 下掃描結(jié)果如圖4 所示。

 

 

2 LED 芯片表面雙層微結(jié)構(gòu)技術(shù)

LED 芯片表面雙層結(jié)構(gòu)指的是在p 型GaN 半導(dǎo)體上出光表面和ITO 透明導(dǎo)電電極的上表面各加工上一層微結(jié)構(gòu)。這種雙層微結(jié)構(gòu)的LED 芯片的出光效率較普通的LED 芯片提高了近40%。J. H. Kang 等人[11]設(shè)計的雙層微結(jié)構(gòu)LED 芯片的制作方法如圖5 所示,先在LED 芯片的p 型GaN 半導(dǎo)體材料上表面沉積一層200nm 厚的ITO透明導(dǎo)電膜( 如圖5( a) ) ,再用5% 的稀鹽酸浸泡約30s,由于稀鹽酸對ITO 膜的腐蝕作用,200nm 的ITO 薄膜將被腐蝕成直徑約為200nm 的ITO 納米導(dǎo)電球體( 如圖5( b) ) ,此時,微小的ITO 納米球作為后續(xù)蝕刻處理中的掩膜結(jié)構(gòu),通過電感耦合等離子蝕刻( ICP) 后,由于納米球的保護作用,刻蝕后的芯片p 型GaN 材料的上表面形成紋理微結(jié)構(gòu)( 如圖5( c) ) ,最后在ITO 納米導(dǎo)電球體表面再沉積上氧化銦錫材料,從結(jié)構(gòu)上來說在LED 芯片的上表面形成一種雙層的微結(jié)構(gòu)[10]( 如圖5( d) ) 。

該雙層微結(jié)構(gòu)的頂視圖和截面圖用SEM 掃描圖如圖6 所示,從頂視圖上可以看出許多圓球形的ITO 納米球無規(guī)則的附著在ITO 透明導(dǎo)電膜之上,圖6 SEM 掃描得到的雙層微結(jié)構(gòu)LED芯片表面頂視圖和截面圖[10]形成第一層的微結(jié)構(gòu)。從截面圖上可以看出,p 型GaN 基材的表面也呈現(xiàn)不規(guī)則的凹凸不平整結(jié)構(gòu),形成第二層的微結(jié)構(gòu)。

經(jīng)雙層微結(jié)構(gòu)加工之后的LED 芯片出光效率較未加工的LED 芯片提高了許多,如圖7 所示,加工微結(jié)構(gòu)后的芯片正面輸出光效率比未加工的芯片提高約70%,背面出光效率也比未加工的芯片提高約71. 5%。正面出光效率的增加是由于粗糙的表面導(dǎo)致出射光的散射效應(yīng),使得有更多的光朝著隨機方向傳播,有更多的光可以從上表面出射。而芯片背面的出光效率增強也是由于粗糙上表面對出射光的散射效應(yīng),使得由上表面反射至下表面的光也變得雜亂無規(guī)則,以此增強了下表面的出光效率[11]。

J. H. Kang 等人[11]通過對芯片進行雙層微結(jié)構(gòu)的加工,可以大幅度提升其光學(xué)性能,能夠得到比較好的外量子效率。但是該技術(shù)也有其缺陷,由于加工過程中的沉積和蝕刻都有比較大的隨機性。生產(chǎn)的重復(fù)性不好,并且由于對p 型GaN 半導(dǎo)體材料表面的粗糙化,難免會破壞LED 芯片中的p-GaN 層,影響了芯片的電學(xué)性能,由于微結(jié)構(gòu)的加工,芯片的方阻會有所提升。

3 LED 芯片表面二維光子晶體結(jié)構(gòu)的加工

光子晶體( Photonic Crystal) 即光子禁帶材料,是一類在光學(xué)尺度上具有周期性介電結(jié)構(gòu)的人工設(shè)計及制造的晶體[12]。由于晶粒之間存在的周期性,光子晶體間會出現(xiàn)類似于半導(dǎo)體禁帶結(jié)構(gòu)的光子帶隙( Photonic band gap) 。當(dāng)電磁波在光子帶隙中傳播時,由于存在布拉格散射效應(yīng),故光子晶體具有調(diào)制相應(yīng)波長電磁波的能力。1997 年,S. H. Fan 等人[13]首次研究了光子晶體對LED 自發(fā)輻射能量及空間分布的影響。光子晶體結(jié)構(gòu)示意圖如圖8。

J. H. Kang 等人[11]通過對芯片進行雙層微結(jié)構(gòu)的加工,可以大幅度提升其光學(xué)性能,能夠得到比較好的外量子效率。但是該技術(shù)也有其缺陷,由于加工過程中的沉積和蝕刻都有比較大的隨機性。生產(chǎn)的重復(fù)性不好,并且由于對p 型GaN 半導(dǎo)體材料表面的粗糙化,難免會破壞LED 芯片中的p-GaN 層,影響了芯片的電學(xué)性能,由于微結(jié)構(gòu)的加工,芯片的方阻會有所提升。

3 LED 芯片表面二維光子晶體結(jié)構(gòu)的加工

光子晶體( Photonic Crystal) 即光子禁帶材料,是一類在光學(xué)尺度上具有周期性介電結(jié)構(gòu)的人工設(shè)計及制造的晶體[12]。由于晶粒之間存在的周期性,光子晶體間會出現(xiàn)類似于半導(dǎo)體禁帶結(jié)構(gòu)的光子帶隙( Photonic band gap) 。當(dāng)電磁波在光子帶隙中傳播時,由于存在布拉格散射效應(yīng),故光子晶體具有調(diào)制相應(yīng)波長電磁波的能力。1997 年,S. H. Fan 等人[13]首次研究了光子晶體對LED 自發(fā)輻射能量及空間分布的影響。光子晶體結(jié)構(gòu)示意圖如圖8。

J. H. Kang 等人[11]通過對芯片進行雙層微結(jié)構(gòu)的加工,可以大幅度提升其光學(xué)性能,能夠得到比較好的外量子效率。但是該技術(shù)也有其缺陷,由于加工過程中的沉積和蝕刻都有比較大的隨機性。生產(chǎn)的重復(fù)性不好,并且由于對p 型GaN 半導(dǎo)體材料表面的粗糙化,難免會破壞LED 芯片中的p-GaN 層,影響了芯片的電學(xué)性能,由于微結(jié)構(gòu)的加工,芯片的方阻會有所提升。

3 LED 芯片表面二維光子晶體結(jié)構(gòu)的加工

光子晶體( Photonic Crystal) 即光子禁帶材料,是一類在光學(xué)尺度上具有周期性介電結(jié)構(gòu)的人工設(shè)計及制造的晶體[12]。由于晶粒之間存在的周期性,光子晶體間會出現(xiàn)類似于半導(dǎo)體禁帶結(jié)構(gòu)的光子帶隙( Photonic band gap) 。當(dāng)電磁波在光子帶隙中傳播時,由于存在布拉格散射效應(yīng),故光子晶體具有調(diào)制相應(yīng)波長電磁波的能力。1997 年,S. H. Fan 等人[13]首次研究了光子晶體對LED 自發(fā)輻射能量及空間分布的影響。光子晶體結(jié)構(gòu)示意圖如圖8。

J. H. Kang 等人[11]通過對芯片進行雙層微結(jié)構(gòu)的加工,可以大幅度提升其光學(xué)性能,能夠得到比較好的外量子效率。但是該技術(shù)也有其缺陷,由于加工過程中的沉積和蝕刻都有比較大的隨機性。生產(chǎn)的重復(fù)性不好,并且由于對p 型GaN 半導(dǎo)體材料表面的粗糙化,難免會破壞LED 芯片中的p-GaN 層,影響了芯片的電學(xué)性能,由于微結(jié)構(gòu)的加工,芯片的方阻會有所提升。

3 LED 芯片表面二維光子晶體結(jié)構(gòu)的加工

光子晶體( Photonic Crystal) 即光子禁帶材料,是一類在光學(xué)尺度上具有周期性介電結(jié)構(gòu)的人工設(shè)計及制造的晶體[12]。由于晶粒之間存在的周期性,光子晶體間會出現(xiàn)類似于半導(dǎo)體禁帶結(jié)構(gòu)的光子帶隙( Photonic band gap) 。當(dāng)電磁波在光子帶隙中傳播時,由于存在布拉格散射效應(yīng),故光子晶體具有調(diào)制相應(yīng)波長電磁波的能力。1997 年,S. H. Fan 等人[13]首次研究了光子晶體對LED 自發(fā)輻射能量及空間分布的影響。光子晶體結(jié)構(gòu)示意圖如圖8。

 

 

J. H. Kang 等人[11]通過對芯片進行雙層微結(jié)構(gòu)的加工,可以大幅度提升其光學(xué)性能,能夠得到比較好的外量子效率。但是該技術(shù)也有其缺陷,由于加工過程中的沉積和蝕刻都有比較大的隨機性。生產(chǎn)的重復(fù)性不好,并且由于對p 型GaN 半導(dǎo)體材料表面的粗糙化,難免會破壞LED 芯片中的p-GaN 層,影響了芯片的電學(xué)性能,由于微結(jié)構(gòu)的加工,芯片的方阻會有所提升。中國照明網(wǎng)技術(shù)論文·LED照明

3 LED 芯片表面二維光子晶體結(jié)構(gòu)的加工

光子晶體( Photonic Crystal) 即光子禁帶材料,是一類在光學(xué)尺度上具有周期性介電結(jié)構(gòu)的人工設(shè)計及制造的晶體[12]。由于晶粒之間存在的周期性,光子晶體間會出現(xiàn)類似于半導(dǎo)體禁帶結(jié)構(gòu)的光子帶隙( Photonic band gap) 。當(dāng)電磁波在光子帶隙中傳播時,由于存在布拉格散射效應(yīng),故光子晶體具有調(diào)制相應(yīng)波長電磁波的能力。1997 年,S. H. Fan 等人[13]首次研究了光子晶體對LED 自發(fā)輻射能量及空間分布的影響。光子晶體結(jié)構(gòu)示意圖如圖8。

 

 

光子晶體具有三種特性: 能夠利用光子帶隙遮蔽光; 具有異向性,通過光子晶體的光會無規(guī)則的散射; 光子晶體曲線變化非常快,同波長有關(guān)。光子晶體可分為三類: 一維、二維、三維結(jié)構(gòu)。一維的光子晶體只能在很小的角度范圍內(nèi)發(fā)出衍射光,不能衍射平面任意角度的入射光; 由于技術(shù)限制,制備符合規(guī)范的三維結(jié)構(gòu)光子晶體目前還比較困難。而二維光子晶體可以衍射較大角度上的入射光,因此目前主要用二維的光子晶體來提高LED 的出光效率[14]。影響其出光效率的主要因素有光子晶體結(jié)構(gòu)、晶粒高度、晶格常數(shù)等。

利用光子晶體結(jié)構(gòu)提高LED 出光效率主要有兩種原理[15, 16]。第一是利用了光子晶體的禁帶效應(yīng)原理,禁帶效應(yīng)原理主要表現(xiàn)在: 頻率落在禁帶范圍內(nèi)的光子被禁止傳播,如果LED 芯片上集成了光子晶體結(jié)構(gòu),當(dāng)LED 中導(dǎo)光模的頻率落在光子晶體的禁帶以內(nèi)時,光波將被耦合成在自由空間中的輻射模式,在這種情況下,可以大幅增加光的提取效應(yīng)。第二種是利用光子晶體的光柵衍射效應(yīng)。光子晶體構(gòu)成了一種類光柵的結(jié)構(gòu),當(dāng)光束進入p 型GaN 的表層的出射光和周期與光波長相當(dāng)?shù)墓鈻沤Y(jié)構(gòu)發(fā)生作用時,光波就會被調(diào)制,一些本來難以出射的光束被耦合成出射光,如圖9 所示,由于光柵衍射效應(yīng),原本因全反射被限制在p 型GaN 半導(dǎo)體材料中的光束可以出射到空間中,則可以提高LED 芯片的出光效率和控制光的空間分布。其中,Chia-HsinChao 等人[17]研制的定向光提取光子晶體氮化鎵薄膜LED 輸出功率較無光子晶體的氮化鎵薄膜LED提高了多達77%,并且通過設(shè)計改善光子晶體的排布模式和晶格方向可以使LED 的出光限制在較小的范圍之內(nèi)。

 

 

目前主要的制造光子晶體結(jié)構(gòu)的技術(shù)有納米壓印光刻( NIL) 、電子束光刻( EBL) 、激光全息光刻法( LHL) [18],通過光子晶體結(jié)構(gòu)的設(shè)計,減少了光在LED 芯片內(nèi)的傳播和消耗,實現(xiàn)了LED 外量子效率的提高。光子晶體LED 的發(fā)光效率最多可以提高140%。

4 LED 雙光柵微結(jié)構(gòu)技術(shù)

在LED 中引入光柵微納光學(xué)結(jié)構(gòu)的方法可以有效地增強LED 芯片的出光效率。其中,利用單光柵結(jié)構(gòu)的LED 的光提取效率已有大幅提高,但由于一維光柵結(jié)構(gòu)只能衍射單個方向上的光[19],沿著光柵方向傳播的光仍然被全反射效應(yīng)限制,出光效率仍然受到較大限制。

清華大學(xué)實驗室[20]設(shè)計了一種GaN 基的雙光柵微納結(jié)構(gòu),該結(jié)構(gòu)如圖10( a) 所示。其中第一個光柵G1加工在上表面的ITO 層上,第二個光柵G2刻蝕在GaN 層的下表面,兩個光柵的刻線方向相互垂直,這樣那些在G1處全反射的光線經(jīng)G2的光柵衍射后,使其入射角小于出射臨界角,再經(jīng)過G1輻射出去。其原理如圖10( b) 所示。因此,雙光柵結(jié)構(gòu)可以有效的提取因全反射而受限制的出射光。雙光柵結(jié)構(gòu)LED 可以提取出傳統(tǒng)LED 中大部分因全反射而無法出射的受限光,根據(jù)研究者的軟件評價結(jié)果可以表明,這種LED 的理論光提取效率可以達到48. 5%[20],較傳統(tǒng)LED 高了約6. 3 倍。

 

 

5 結(jié)論

作為第三代照明光源,發(fā)光二極管( LED) 的使用已經(jīng)日益廣泛,LED 發(fā)光效率的提高對于降低功耗、節(jié)約能源有著重大的意義。目前,GaN 基LED的內(nèi)量子效率已經(jīng)達到90%,但由于受全反射影響,普通LED 的外量子效率僅為5%。利用LED 芯片表面的微結(jié)構(gòu)加工,可以大幅改善LED 的出光效率。但由于微納結(jié)構(gòu)加工的重復(fù)性不好以及加工過程中對半導(dǎo)體材料的電學(xué)特性有所影響,這些因素都會影響到LED 芯片的出光效率以及增加芯片能耗。因此,優(yōu)化和改善微納結(jié)構(gòu)加工工藝以及將微結(jié)構(gòu)加工與其他提高出光效率的技術(shù)相互結(jié)合,是未來的研究趨勢。

更多資訊請關(guān)注:21ic照明頻道

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫毥谦F公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉