數(shù)字音頻射頻收發(fā)芯片nRF24Z1原理及應(yīng)用
掃描二維碼
隨時(shí)隨地手機(jī)看文章
nRF24Z1[1]是Nordic公司推出的單片式CD音質(zhì)無(wú)線數(shù)字音頻芯片,采用了最新的MegaZtream平臺(tái),能以高達(dá)48 kHz,24位即1.54 Mbps的速率實(shí)現(xiàn)音頻數(shù)據(jù)無(wú)損傳輸和高達(dá)4 Mbps的2.4 GHz無(wú)線射頻收發(fā)內(nèi)核,嵌入了一個(gè)服務(wù)質(zhì)量(QoS)極佳子系統(tǒng),為高品質(zhì)音頻傳輸提供了足夠的帶寬;I2S 接口提供了與各種低成本A/D轉(zhuǎn)換器和D/A轉(zhuǎn)換器的無(wú)縫連接接口,S/PDIF 接口提供了與計(jì)算機(jī)和環(huán)繞設(shè)備的直接接口;SPI或I2C接口以雙向傳輸實(shí)現(xiàn)音量調(diào)節(jié)、動(dòng)態(tài)平衡、多態(tài)顯示等;多種低功耗模式,極大地延長(zhǎng)了電池壽命;工作電壓為2.0~3.6 V,片內(nèi)集成了電壓管理器,能夠最大限度地抑制噪聲;36腳6 mm×6 mm QFN封裝,需要非常少的外圍元件。使用2.4 GHz小型桿狀天線,空曠地傳輸距離在30 m以上,可應(yīng)用于無(wú)線話筒、無(wú)線耳機(jī)、無(wú)線音箱等系統(tǒng)中。
1 nRF24Z1芯片功能結(jié)構(gòu)
1.1 ATX(音頻發(fā)射)
nRF24Z1在射頻連接的音源一方使用時(shí),MODE引腳接高電平,使nRF24Z1成為一個(gè)ATX,其片內(nèi)功能結(jié)構(gòu)如圖1所示。音頻數(shù)據(jù)輸入 由I2S接口或S/PDIF接口承擔(dān)。I2S接口由CLK、DATA和WS三個(gè)引腳組成外接A/D轉(zhuǎn)換器,采樣支持32、44.1、48 ksps,16或24位格式的音頻數(shù)據(jù),MCLK引腳提供基礎(chǔ)采樣頻率的256倍作為A/D的系統(tǒng)時(shí)鐘頻率;S/PDIF接口只有SPDIO一個(gè)引腳,采 樣支持32、44.1、48 ksps,16位、20位或24位格式的音頻數(shù)據(jù)。
作為ATX時(shí),一般外接MCU控制nRF24Z1,ATX與ARX的配置和控制數(shù)據(jù)可以通過(guò)I2C從接口或SPI從接口提供,并可從ARX讀回 狀態(tài)信息。SSEL引腳為低時(shí),選用SPI從接口(SCSN、SSCK、SMISO和SMOSI);SSEL引腳為高時(shí),選用I2C從接口(SSCL、 SSDA)。如果不外接MCU,也可使用SPI主接口(MCSN、MMISO、MMOSI和MSCK)或I2C主接口(MSDA、MSCL)外掛 EEPROM或Flash存儲(chǔ)器,nRF24Z1在上電或復(fù)位時(shí),可從存儲(chǔ)器讀取默認(rèn)的配置數(shù)據(jù)。
圖1 nRF24Z1作為ATX時(shí)片內(nèi)功能結(jié)構(gòu)框圖
ATX有通用輸入引腳DD0、DD1、DD2(當(dāng)SSEL=1時(shí))。此時(shí),ARX的DO2、DO1和DO0三個(gè)引腳的信號(hào)為DD2、DD1和 DD0引腳的鏡像,使ARX在沒(méi)有MCU時(shí)也能實(shí)現(xiàn)一些控制(如音量開(kāi)關(guān)等)。當(dāng)nRF24Z1檢測(cè)到?jīng)]有音頻輸入或射頻連接斷開(kāi)時(shí),其可以通過(guò)IRQ引 腳給MCU提供中斷信號(hào)。
1.2 ARX(音頻接收)
nRF24Z1在射頻連接的音宿一方使用時(shí),MODE引腳接低電平,使nRF24Z1成為一個(gè)ARX,其片內(nèi)功能結(jié)構(gòu)如圖2所示。此時(shí),I2S 接口或S/PDIF接口用作音頻數(shù)據(jù)或其他實(shí)時(shí)數(shù)據(jù)的輸出接口。I2S接口外接D/A轉(zhuǎn)換器,采樣支持32、44.1、48 ksps,16位格式的音頻數(shù)據(jù),MCLK引腳提供基礎(chǔ)采樣頻率的256倍作為D/A的系統(tǒng)時(shí)鐘頻率;S/PDIF接口采樣支持32、44.1、48和 96 ksps,16位或24位格式的音頻數(shù)據(jù)。
圖2 nRF24Z1作為ARX時(shí)片內(nèi)功能結(jié)構(gòu)框圖
射頻連接建立后,通過(guò)ATX控制ARX的SPI主接口或I2C主接口,從而對(duì)ARX的D/A轉(zhuǎn)換器和音頻放大器實(shí)現(xiàn)射頻遙控。而且ARX還監(jiān)視 輸入DI[3∶0]引腳,如有變化,就把引腳的變化送回ATX,或者使ARX從睡眠狀態(tài)中回到工作狀態(tài)。ARX的DO[2∶0]受ATX的DI[2∶0] 控制,可驅(qū)動(dòng)LED指示燈或者其他標(biāo)準(zhǔn)的CMOS器件;而DO3可編程為8位分辨率的PWM輸出。
作為ARX時(shí),一般使用SPI主接口或I2C主接口外掛EEPROM或Flash存儲(chǔ)器,nRF24Z1在上電或復(fù)位時(shí),從存儲(chǔ)器讀取默認(rèn)的配 置數(shù)據(jù)。如果沒(méi)有外掛存儲(chǔ)器,芯片將使用其自身的默認(rèn)值。當(dāng)然,ARX也可外接MCU,由SSEL引腳的電平?jīng)Q定接收端工作于SPI從接口還是I2C從接 口。
2 nRF24Z1音頻數(shù)據(jù)傳輸射頻協(xié)議
nRF24Z1芯片的射頻工作方式是采用GFSK(高斯頻率偏移鍵控),而且為保證通信低誤碼率,芯片還采用了QoS(服務(wù)質(zhì)量)策略。該策略包括雙向通信機(jī)制和應(yīng)答策略(時(shí)分雙工)、數(shù)據(jù)完整性策略和CRC檢錯(cuò)、射頻搜索連接和掉線搜索重連接策略、自適應(yīng)跳頻策略。
(1) 雙向通信機(jī)制和應(yīng)答策略
雙向通信機(jī)制和應(yīng)答策略如圖3所示。ATX到ARX的通信為實(shí)時(shí)和重發(fā)的音頻信道,而ARX與ATX的雙向通信則是控制信道??刂菩诺赖男畔ù_認(rèn)信息、寄存器信息以及引腳狀態(tài)信息等。
(2) 數(shù)據(jù)完整性策略和CRC檢錯(cuò)
數(shù)據(jù)完整性策略和CRC檢錯(cuò)完全通過(guò)硬件實(shí)現(xiàn), 用戶只需配置射頻協(xié)議的ATX和ARX的地址。發(fā)送和返回的數(shù)據(jù)包以數(shù)據(jù)幀為單位,其幀格式如圖4所示。
圖4 nRF24Z1發(fā)送和返回?cái)?shù)據(jù)幀格式
圖4中,P(引導(dǎo)碼)在數(shù)據(jù)幀的開(kāi)頭,作為數(shù)據(jù)流同步使用;ADDR(接收端地址)為片內(nèi)寄存器ADDR0~ADDR4;ID(數(shù)據(jù)包標(biāo)識(shí) 碼),其取值為0~63;C(音頻壓縮標(biāo)識(shí)位),1位,表示本幀音頻數(shù)據(jù)是否壓縮;ACK表示ARX返回ARX所接收到的音頻數(shù)據(jù)情況;DATA是控制或 寄存器數(shù)據(jù),作為收發(fā)雙方傳輸?shù)墓ぷ鲾?shù)據(jù);AUDIO DATA為實(shí)時(shí)和重發(fā)的音頻數(shù)據(jù),一幀采樣16組立體聲數(shù)據(jù),每組32位;CRC檢測(cè)本幀數(shù)據(jù)是否有錯(cuò)。
ARX接收數(shù)據(jù)時(shí),nRF24Z1先接收一幀數(shù)據(jù)包,分別驗(yàn)證引導(dǎo)碼、ARX地址和校驗(yàn)碼正確后,就返回表示接收正確(ARX工作狀態(tài)裝在 DATA)的確認(rèn)碼,然后讀出DATA數(shù)據(jù),根據(jù)DATA數(shù)據(jù)完成ARX的任務(wù),再根據(jù)C的標(biāo)識(shí)決定本幀音頻數(shù)據(jù)是否解壓縮,最后按標(biāo)識(shí)碼ID把音頻數(shù)據(jù) 排隊(duì)通過(guò)I2S接口發(fā)送出去。反之,放棄本幀數(shù)據(jù),返回有錯(cuò)誤(ARX的工作狀態(tài)和錯(cuò)誤內(nèi)容裝在DATA)的確認(rèn)碼,要求重發(fā)。其中,PKT1, PKT2,…,PKT8為實(shí)時(shí)音頻數(shù)據(jù);X1,X2,…,XN為重發(fā)的音頻數(shù)據(jù)。
(3) 射頻搜索連接和掉線搜索重連接策略
nRF24Z1完成初始配置后或者射頻連接掉線后,在與ARX建立射頻連接之前,ATX在所有可用的頻道上,反復(fù)地向ARX發(fā)送搜索信息包,在 每個(gè)頻道上搜索一段時(shí)間,以使ARX能夠接收和處理搜索信息。與此同時(shí),當(dāng)?shù)谹RX也在所有可用的頻道上監(jiān)聽(tīng)信息,每個(gè)頻道監(jiān)聽(tīng)一段時(shí)間,一旦監(jiān)聽(tīng)到來(lái)自 發(fā)射端的搜索信息包,ARX發(fā)送應(yīng)答信息,ARX和ATX都鎖定該頻道,以準(zhǔn)備通信。
(4) 自適應(yīng)跳頻策略
自適應(yīng)跳頻策略是屬于QoS策略抗干擾的重要手段,是為了系統(tǒng)保證數(shù)字音頻的“透明”無(wú)線傳輸。nRF24Z1共有38個(gè)自適應(yīng)跳頻通信的工作 頻率,由跳頻寄存器CH0~CH37控制。跳頻時(shí),nRF24Z1根據(jù)跳頻寄存器中的內(nèi)容按順序改變工作頻率,即當(dāng)CH0的頻率受到干擾而無(wú)法進(jìn)行RF連 接時(shí),nRF24Z1會(huì)使用CH1進(jìn)行連接,如果CH1受到干擾,則使用CH2,依次類推。因此,在跳頻通信之前,各個(gè)跳頻寄存器要通過(guò)外部EEPROM 或MCU進(jìn)行初始化。
3 基于nRF24Z1芯片的典型應(yīng)用[23]
3.1 多媒體教室無(wú)線話筒系統(tǒng)設(shè)計(jì)
為了解決目前多媒體教室所使用以模擬電路為主的無(wú)線話筒缺陷(音質(zhì)差、功耗大、射頻頻點(diǎn)需要固定,且要錯(cuò)開(kāi)其他頻點(diǎn)或干擾源),設(shè)計(jì)了以nRF24Z1芯片為主的典型應(yīng)用,如圖5所示。
圖5 多媒體教室無(wú)線話筒系統(tǒng)設(shè)計(jì)
無(wú)線話筒發(fā)射端為可攜帶的便攜式話筒,主要由無(wú)線數(shù)字音頻nRF24Z1、A/D轉(zhuǎn)換器、MCU等組成。當(dāng)nRF24Z1作為發(fā)射端時(shí),其 MODE引腳必須接到高電平,I2S接口作數(shù)字音頻輸入接口。無(wú)線話筒輸入的主信號(hào)源選用有良好聲學(xué)性能、貼片電容式硅麥克風(fēng),通過(guò)前置放大,作為A/D 主要的模擬音頻信號(hào)源;另外可自帶CD機(jī)等其他任何標(biāo)準(zhǔn)的立體聲音源作為另一組模擬音頻信號(hào)源。MCU除了通過(guò)I2C兼容接口控制nRF24Z1和A/D 轉(zhuǎn)換器外,還處理Play(放音/靜音/睡眠)、Mic up(話筒增益增大)、Mic down(話筒增益減小)按鍵和指示燈的工作提示。
無(wú)線話筒接收端為固定式接收端,由無(wú)線數(shù)字音頻nRF24Z1、EEPROM存儲(chǔ)器、D/A轉(zhuǎn)換器和音頻功率放大電路組成。因接收端功能比較簡(jiǎn) 單,不再使用微控制器,而是使nRF24Z1工作在主模式狀態(tài),通過(guò)主SPI接口控制EEPROM存儲(chǔ)器,讀取上電時(shí)在存儲(chǔ)器已設(shè)置好的配置數(shù)據(jù),同時(shí)通 過(guò)主I2C接口控制D/A轉(zhuǎn)換器。當(dāng)nRF24Z1用作音頻接收器時(shí),MODE引腳必須為低電平,I2S接口作數(shù)據(jù)音頻輸出接口。
由于多媒體教室無(wú)線話筒收發(fā)兩端使用了以nRF24Z1為主的芯片,其射頻協(xié)議完全由其片內(nèi)硬件處理,用戶只需配置發(fā)射端和接收端公共地址,以及發(fā)射端唯一的私密地址。
3.2 無(wú)線話筒射頻發(fā)送和射頻接收控制流程
無(wú)線話筒發(fā)射端由微控制器控制(nRF24Z1工作在從模式),接收端由nRF24Z1主模式控制,其射頻發(fā)送和射頻接收控制流程如圖6所示。 發(fā)射端打開(kāi)電源開(kāi)關(guān)時(shí),微控制器首先對(duì)相關(guān)芯片進(jìn)行初始配置,然后進(jìn)入等待狀態(tài)。當(dāng)按下Play鍵時(shí),發(fā)射端先以最小發(fā)射功率(近距離,5 m內(nèi)有效)和公共地址與當(dāng)?shù)亟淌业慕邮斩私⑦B接,然后發(fā)送私密地址進(jìn)行新的連接,最后以最大發(fā)射功率進(jìn)入正常射頻收發(fā)工作。當(dāng)走出接收端范圍時(shí),即失去 連接,系統(tǒng)進(jìn)入自動(dòng)關(guān)機(jī)狀態(tài);或者短時(shí)間連擊Play/Pause鍵(即Stop),系統(tǒng)進(jìn)入電源關(guān)機(jī)模式而降低功耗;或者接連按Play鍵,使其處于暫 停靜音或工作放音交替狀態(tài);若系統(tǒng)處于節(jié)電睡眠狀態(tài),按下Play鍵,系統(tǒng)則退出節(jié)電模式而進(jìn)入喚醒工作模式。
當(dāng)接收端電源打開(kāi)時(shí),系統(tǒng)完成配置初始化,立即以最小功率(近距離)和公共地址監(jiān)聽(tīng),接收發(fā)射端控制信號(hào),并接收發(fā)射端發(fā)來(lái)的私密地址,然后進(jìn)行新的地址連接,最后以最大接收功率進(jìn)入正常的工作狀態(tài)。
結(jié)語(yǔ)
由上面論述可知,nRF24Z1可以很方便地進(jìn)行傳輸模式設(shè)計(jì)、地址設(shè)計(jì)、跳頻設(shè)計(jì)等。軟件設(shè)計(jì)非常簡(jiǎn)單,雖然是非標(biāo)準(zhǔn)的射頻協(xié)議, 但卻能完成遵守標(biāo)準(zhǔn)射頻協(xié)議(如藍(lán)牙技術(shù))的數(shù)字音頻射頻收發(fā)工作任務(wù),而且音頻音質(zhì)上超過(guò)了使用藍(lán)牙技術(shù)設(shè)計(jì)的產(chǎn)品[4]。藍(lán)牙技術(shù)正是為了遵守復(fù)雜的 標(biāo)準(zhǔn)協(xié)議,形成的數(shù)據(jù)包結(jié)構(gòu)相當(dāng)復(fù)雜,大幅度增加處理量及同步處理要求,使電池消耗迅速增加,因而導(dǎo)致成本高,開(kāi)發(fā)周期長(zhǎng),目前難以普及。當(dāng)然,藍(lán)牙技術(shù) 互換性好,但是如果發(fā)射端和接收端都使用同一芯片,那么nRF24Z1芯片在無(wú)線音頻電路設(shè)計(jì)中是最好不過(guò)的選擇。
參考文獻(xiàn)
[1] Nordic VLSI ASA Inc. 2.4GHz wireless audio streamer nRF24Z1.2006-11.
[2] nRF24Z1 Headphone Reference Design 1,nRF24Z1HPR1[OL].http://www.nvlsi.no,2006-11-20.
[3] 應(yīng)俊,陳廣飛.無(wú)線語(yǔ)音通信系統(tǒng)的研制及其在野戰(zhàn)醫(yī)療中的應(yīng)用[J].醫(yī)療衛(wèi)生裝備,2006,27(12):7-8.
[4] 迅通科技.設(shè)計(jì)最佳的無(wú)線音頻產(chǎn)品[EB/OL].http://www.freqchina.com/wireless%20audio.pdf,2006-10-25.