當前位置:首頁 > 通信技術 > 通信技術
[導讀]本文把RFID技術應用到物流系統(tǒng)中,實現了基于RFID技術的物流系統(tǒng)的軟硬件原型?! ∠到y(tǒng)硬件設計  為了增強讀寫模塊的通用性和擴展性,在硬件設計時遵循模塊化的設計思想。整個讀寫模塊由三大部分組成:  。主控

本文把RFID技術應用到物流系統(tǒng)中,實現了基于RFID技術的物流系統(tǒng)的軟硬件原型。

  系統(tǒng)硬件設計

  為了增強讀寫模塊的通用性和擴展性,在硬件設計時遵循模塊化的設計思想。整個讀寫模塊由三大部分組成:

  。主控MCU,主要提供對射頻讀寫芯片的控制操作。

  。射頻讀寫芯片,負責接收主控MCU的控制信息并完成與RFID卡的通信操作。為了正常工作,射頻讀寫芯片須選用合適的并行接口與MCU連接。而為了發(fā)送、接收穩(wěn)定的高頻信號,射頻讀寫芯片要通過高頻濾波電路與天線部分連接。

  。天線部分,包括線圈及匹配電路。

  在所設計的TRH031M評估板中,主控MCU主要由微控制器ATMEGA64L和電源電路、復位電路、晶振電路、JTAG接口、RS-232串口接口組成;同時增加了人機接口顯示電路,采用EDM12864液晶顯示控制器;射頻讀寫芯片采用TRH031M多協(xié)議讀卡器芯片。微控制器ATMEGA64L和TRH031M之間通過鎖存器SN74HC373N連接。TRH031M評估板總體設計見圖1。

  

 

  圖1 TRH031M評估板總體設計框圖

  RFID接口電路

  TRH031M是一款三合一的芯片,兼容ISO14443 Type A&B以及ISO15693協(xié)議。TRH031M工作電壓范圍在2.7V-3.6V,最大特點是功耗極低,芯片的封裝方式也特別適合用在手持機方面的產品上。MCU對TRH031M的控制是通過對其內部寄存器的讀寫來實現的。TRH031M內部共有64個寄存器,分成8頁,每頁8個寄存器。

  ATmega64L是基于增強的AVR RISC結構的低功耗8位CMOS微控制器。由于其先進的指令集以及單時鐘周期指令執(zhí)行時間,ATmega64 的數據吞吐率高達1 MIPS/MHz,從而可以緩減系統(tǒng)在功耗和處理速度之間的矛盾。

  ATmega64L通過 TRH031M并行接口實現對TRH031M芯片的控制和數據傳輸。Atmega64L對TRH031M的并行接口采用獨立的讀、寫信號線連接,用兩個 I/0引腳分別控制TRH031M的讀、寫信號線。為了節(jié)省I/O口,這里采用了地址/數據線復用的方式,這樣就不需要專門的I/O口來控制地址線。 ATmega64L與TRH031M連接示意圖參見圖2。

  

 

  圖2 ATmega64L與TRH031M連接示意圖

  ATmega64L的 PTA0~PTA7連接TRH031M的DATA0~DATA7,作為數據/地址線,傳輸數據及地址信息。由于采用數據/地址復用的連接方式,Atmega64L 的PTA0~PTA7通過鎖存器SN74HC373DBLE與TRH031M的地址線引腳A0,Al,A2連接。

  天線電路

  TRH031M的天線部分組成,主要分為發(fā)射和接收部分,發(fā)射部分又分為EMC低通濾波器,天線匹配部分和天線線圈。天線直接連接到TRH031M.,圖3為天線的結構原理圖。

  

 

  圖3 天線結構原理圖

  由RTH031M的數據手冊可知,芯片模擬部分(不含接收機部分)作為負載時,負載阻抗最高為15W。這是因為優(yōu)化設置輸出阻抗為15W時,這時可以達到最低噪音,最大增益和最大輸出功率。

  天線的阻抗我們按500W進行匹配。

  EMC低通濾波器

  TRH031M系統(tǒng)工作于 13.56MHz頻率下,這一頻率是由石英晶體振蕩器產生。但是除了13.56MHz以外,還會有可能以高次諧波的方式向外發(fā)射。為了符合國際EMC 規(guī)定,13.56MHz 中的三次五次和高次諧波要被良好地抑制,因此,必須要有一個合適的濾波器濾波輸出信號以滿足此規(guī)定。為了減少信號線上的干擾,使用了EMC高頻濾波電路。 EMC濾波電路和接收電路的原理圖見圖4。低通濾波器由L0和C0組成,它們的值見表1。

  表1

  

 

  

 

  圖4 EMC濾波電路和接收電路的原理圖

  根據f=,當我們選取=1mH時,則TRH031M的內部接收電路利用卡的回應信號在副載波的雙邊帶上都有調制這一概念來進行工作。采用芯片內部產生的VMID作為RX引腳輸入。為了穩(wěn)定 VMID的輸出,必須在VMID和GND之間連接一個電容C4。接收電路需要在RX和VMID之間連接一個分壓電路。另外,建議在天線線圈和反壓器之間串連一個電容。這個接收電路由R1,R2,C3和C4組成,數值示于表1。EMC濾波電路仿真

 

  針對500W天線阻抗進行EMC濾波電路的仿真:

 ?、?設定特性阻抗Z。=500W,輸入信號頻率為13.56MHz;

 ?、?令負載ZL=500W+0.00jW,確定起始點1;

 ?、?在ZL上并聯電容C0,得到點2;

 ?、?再在C0上串聯電感L0,得到點3;

  應使點3位于15W匹配點,若點3 不能精確位于該點,則應微調各元件參數。由圓圖的直觀性,該調整不難實現。由此,得到如圖5(a)所示的阻抗圓圖。由Smith Chart得到C0 =136pF,L0=1mH時,可以推算出1、3點間的等效阻抗為15.24+j 0.00W,接近于負載阻抗15Ω,這表明了我們所設計的元件參數是正確的。其誤差源于元件不可能無限精確。

  

 

  (a)

  

 

  (b)

  圖5 EMC濾波電路Smith圓圖

  由此,得到如圖5(b)所示的阻抗圓圖。由Smith Chart得到C0 =136pF,L0=1mH時,可以推算出1、3點間的等效阻抗為500.42+j 50.47歐姆,接近于天線阻抗500歐姆,這表明了前面我們所設計的元件參數是正確的。

  天線匹配電路設計

  天線本身是一個低電阻的器件,將天線連接到TRH031M需要一個匹配電路。設計天線的匹配電路有兩種方法:50W匹配天線和使用直接匹配的天線配置。在本設計中采用直接匹配的天線配置。

  計算天線線圈的電感

  精確計算天線線圈的電感值在實踐上非常困難的,通常用下面的公式估算:

  L[nH]=2×L[cm]×(ln(L[mm] / D[mm]-k)) (1)

  其中L為天線線圈一圈的長度,N為天線線圈圈數,一般為3圈,D為天線線圈直徑或導體的寬度,P為由天線線圈的技術而定的N的指數因子(見表2)。

  線圈電阻的估算

  沒有阻抗分析儀的首次天線調諧的估算可以用下面的公式:

  RANT=5RDC (2)

  為了給RFID卡提供足夠的能量,天線與卡片間必須實現緊耦合,耦合系數最少為0.3(耦合系數為0時,即由于距離太遠或磁屏蔽導致完全去耦,耦合系數為1即全耦合)。因此天線線圈采用直徑為1mm的導線,設計為三圈的76mm×49mm長方形天線。此時,天線線圈產生的電感,由公式1可計算出天線線圈的電感值約為L=1.7mH。天線電阻R=1.4W。

  由于每塊不同的天線電路板實際的天線線圈電感值總是會稍有差異,在實際的PCB設計時,天線匹配網絡的元件的設計過程按照圖6進行調整。諧振電容由固定電容=150pF和可調電容CV2代替。通過調整可調電容CV2來使得天線的振蕩頻率為13.35MHz,通過調節(jié)C1使得天線的阻抗為500W,通過調整可調電容將每塊天線板的讀寫距離調整到最佳。

  

 

  圖6天線匹配電路調整過程

  天線匹配網絡仿真步驟如下:

 ?、?設定特性阻抗Z。=500 W,輸入信號頻率為13.56MHz;

 ?、?令負載ZL=0.00W+0.00jW,確定起始點1;

 ?、?在ZL上串聯電阻Rcoil=0.7W,得到點2;

 ?、?再在Rcoil上串聯電感L=0.85mH,得到點3;

 ?、?再并聯電容C2,得到點4;

 ?、?最后再串聯電容C1,得到點5。

  

 

  圖7 天線匹配網絡電路的Smith圓圖

  由此,得到如圖7所示的阻抗圓圖。圖中設Rcoil為0.7W,L為0.85微亨,這樣天線就由Rcoil和L來等效代替。由Smith Chart得到C2=163pF , C1 =15pF,由此可以推算出1、5點間的等效阻抗為247.79+j11W,接近于對稱天線的一半阻抗250W。

  通過仿真得到的結果與筆者設計的元件參數基本一致,這說明了所設計的天線電路是正確的。

  結語

  基于ISO/IEC 15693標準,設計了基于ATMEGA64L微控制器和TRH031M讀卡芯片工作頻率為13.56MHZ的RFID讀寫器系統(tǒng)。設計并實現了基于 RFID技術的物流系統(tǒng)的軟硬件原型,經過實際使用證明,系統(tǒng)的總體方案設計可行,其主要功能基本得以實現,達到了系統(tǒng)的性能指標:設計的讀卡器系統(tǒng)對無源的15693協(xié)議的卡片的識別作用距離可達7.5cm。同時該系統(tǒng)能對ISO15693協(xié)議的卡片進行讀寫操作。系統(tǒng)運行正確,顯示準確,使用方便,具有較強的抗干擾性能。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據媒體報道,騰訊和網易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數據產業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數據產業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數字經濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯合牽頭組建的NVI技術創(chuàng)新聯盟在BIRTV2024超高清全產業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現場 NVI技術創(chuàng)新聯...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉