基于LabVIEW的數(shù)字通信系統(tǒng)EVM和ACPR全自動(dòng)化掃描測(cè)試
掃描二維碼
隨時(shí)隨地手機(jī)看文章
隨著無線數(shù)字通信的迅猛發(fā)展,對(duì)于集成電路設(shè)計(jì)和測(cè)試提出了更多的挑戰(zhàn)。在產(chǎn)品設(shè)計(jì)階段,為了保證系統(tǒng)中射頻和基帶芯片的協(xié)同工作能力和兼容性,需要對(duì)系統(tǒng)進(jìn)行嚴(yán)格的性能測(cè)試。然而,日益復(fù)雜的數(shù)字調(diào)制技術(shù)常常給面對(duì)緊湊的項(xiàng)目期限的設(shè)計(jì)團(tuán)隊(duì)帶來更多的壓力。所以,設(shè)計(jì)人員不僅要在短時(shí)間內(nèi)完成系統(tǒng)的測(cè)試,還要盡快從測(cè)試結(jié)果中推斷出造成問題的可能原因。本文提出一種全自動(dòng)化的掃描測(cè)試方案,可以對(duì)數(shù)字通信系統(tǒng)發(fā)射鏈路兩個(gè)關(guān)鍵參數(shù)EVM(ErrorVector Magni rude)和ACPR(Adjacent Channel PowerRatio)進(jìn)行快速、準(zhǔn)確地測(cè)量,以便在第一時(shí)間找到設(shè)計(jì)中問題所在。
1 數(shù)字通信發(fā)射鏈路測(cè)試
對(duì)于數(shù)字通信系統(tǒng)測(cè)試來說,絕大多數(shù)參數(shù)指標(biāo)是在頻域完成的,這就需要通過控制頻譜分析儀和矢量信號(hào)分析儀進(jìn)行測(cè)量。其中測(cè)量數(shù)字調(diào)制的質(zhì)量對(duì)于保證數(shù)字通信系統(tǒng)正常工作和信息準(zhǔn)確傳遞有著重要的意義。數(shù)字通信系統(tǒng)的調(diào)制指標(biāo)主要有EVM,相位誤差,IQ不平衡度等。
EVM是指某一瞬時(shí)理想?yún)⒖夹盘?hào)和被測(cè)量信號(hào)矢量差值的模值。采用安捷倫矢量信號(hào)分析儀89600可以提供快速、高分辨率的頻譜測(cè)量、解調(diào)和時(shí)域分析,來獲得EVM的測(cè)量結(jié)果。
ACPR測(cè)量的是某一通信頻段主信號(hào)能量有多少泄漏到相鄰頻段。它也是數(shù)字通信系統(tǒng)的重要指標(biāo),過大的功率泄漏會(huì)引起相鄰頻段之間的相互干擾。通常,我們最關(guān)注的是主要頻段的信號(hào)功率和鄰近頻段功率的比值,通過控制頻譜分析儀測(cè)量獲得。
數(shù)字通信系統(tǒng)發(fā)射鏈路掃描測(cè)試是指針對(duì)某個(gè)參數(shù),如增益、頻點(diǎn)等的變化評(píng)估其對(duì)EVM和ACPR的影響。本文以發(fā)射鏈路增益自動(dòng)功率控制掃描為例進(jìn)行闡述。APC(Automatic Power Control)自動(dòng)功率控制掃描是對(duì)發(fā)射鏈路中功率放大器驅(qū)動(dòng)和上變頻混頻器的增益進(jìn)行掃描,這些控制位在集成電路中通過特定的寄存器位來進(jìn)行設(shè)置,LabVIEW通過SPI和I2C總線以特定的時(shí)序訪問芯片上這些寄存器,實(shí)現(xiàn)讀寫控制功能,來改變發(fā)射鏈路增益,掃描測(cè)試框圖如圖1所示。
LabVIEW通過GPIB總線對(duì)頻譜分析儀進(jìn)行控制測(cè)量ACPR;使用ActiveX控件控制安捷倫89600矢量信號(hào)分析儀測(cè)量EVM參數(shù)。這個(gè)實(shí)時(shí)控制系統(tǒng)可以利用TCP/IP、GPIB協(xié)議功能來完成PC計(jì)算機(jī)和儀器間的雙向命令傳送。LabVIEW自動(dòng)掃描程序前面板如圖2所示。
根據(jù)掃描測(cè)試操作順序面板分為兩個(gè)部分:左邊是從Excel表格讀人使發(fā)射鏈路功率線形衰減的控制寄存器值;右邊是對(duì)儀器參數(shù)進(jìn)行的自定義設(shè)置以保證更高的測(cè)量精度。所以,整個(gè)LabVIEW程序操作可以分為4部分:從Excel表格中讀取發(fā)射鏈路不同增益衰減情況下的寄存器值;將這些值通過SPI總線寫入芯片相應(yīng)的寄存器中改變發(fā)射鏈路增益(功率);接著,自動(dòng)調(diào)整儀器設(shè)置并從中讀取測(cè)量參數(shù)EVM和ACP;將測(cè)量數(shù)據(jù)結(jié)果實(shí)時(shí)寫入指定的Excel文件并存儲(chǔ)以便后處理進(jìn)行分析。
Excel Read.vi實(shí)現(xiàn)從打開的Excel文件指定工作表的指定行、列中讀取寄存器預(yù)設(shè)值,并存入到LabVIEW的一個(gè)二維數(shù)據(jù)表中緩沖。這樣的好處是可以及時(shí)更正APC的預(yù)設(shè)值,使測(cè)試靈活。本設(shè)計(jì)中這個(gè)動(dòng)作通過圖2中的“從Excel讀取APC數(shù)據(jù)”按鈕進(jìn)行觸發(fā),使用一個(gè)LabVIEW的事件處理結(jié)構(gòu)進(jìn)行處理。
SPI_ Write.vi和SPI_ Read.vi通過LabVIEW對(duì)PC計(jì)算機(jī)并行接口進(jìn)行編程,通過SPI三線控制完成和芯片之間的通訊。其中,并行接口控制是通過LabVIEW中的強(qiáng)大的I/O程序模塊為基本操作單元實(shí)現(xiàn)的。
2 發(fā)射鏈路EVM自動(dòng)化掃描
在通過更改寄存器值完成發(fā)射鏈路功率配置后,就需要控制矢量信號(hào)分析儀89600調(diào)整儀器設(shè)置,并讀取掃描得到的EVM數(shù)據(jù)。LabVIEW完成對(duì)89600初始化后,為保證EVM自動(dòng)測(cè)試精度需要對(duì)其做出如下配置,如圖3所示。
首先,要激活89600顯示頻譜圖的Trace B,如圖4所示。并命令其縱軸進(jìn)行自動(dòng)調(diào)整以保證功率譜在儀器顯示的合適位置上。
接著,激活頻段功率測(cè)量模式(BandPower),按照前面板設(shè)定的“頻帶寬”參數(shù),對(duì)頻段功率的左、右邊界頻率進(jìn)行設(shè)定。這時(shí),LabVIEW就可以通過Band-PowerResult屬性節(jié)點(diǎn)準(zhǔn)確讀取載波的的功率。
頻段功率值對(duì)于調(diào)整儀器的Range參數(shù)和保證EVM精度有著至關(guān)重要的意義。Range參數(shù)調(diào)整的是儀器中模數(shù)轉(zhuǎn)換器(Analog-to-digital converter)的輸入信號(hào)范圍,其值若是過大必然導(dǎo)致輸入信號(hào)的嚴(yán)重失真而使EVM參數(shù)惡化;如果Range值太小則使EVM參數(shù)對(duì)于引入噪聲過于敏感,同樣導(dǎo)致不準(zhǔn)確的測(cè)試結(jié)果。大量實(shí)測(cè)結(jié)果表明,當(dāng)Range參數(shù)值的設(shè)定比以上測(cè)量得到的頻段功率值大3 dB時(shí),可以保證EVM的精確度。另外,由于LabVIEW編程中頻段功率單位是dBm,而Range參數(shù)單位是電壓峰值Vpk,所以在進(jìn)行自動(dòng)Range調(diào)整時(shí)程序需要通過相應(yīng)算法進(jìn)行單位轉(zhuǎn)換,如圖3中第2行結(jié)尾的框圖所示。
在完成各種配置之后,就需要讀取EVM等相應(yīng)的測(cè)試結(jié)果。這通過臨時(shí)建立一個(gè)文本文件“TempTable.TXT”讀取89600中Trace D中的測(cè)量參數(shù)結(jié)果表格,并將其導(dǎo)入到LabVIEW中存儲(chǔ)為一個(gè)數(shù)組變量,要讀取測(cè)量參數(shù)只要指明參數(shù)所在的下標(biāo)并讀取參數(shù)即可,如圖3中最后一行框圖所示,下標(biāo)6,8,18分別指向參量參數(shù)EVM、相位誤差、相位誤差峰值。最后通過LabVIEW把數(shù)據(jù)寫入并存儲(chǔ)到到一個(gè)CSV數(shù)據(jù)文件中以便進(jìn)行數(shù)據(jù)處理分析。
3 發(fā)射鏈路ACPR自動(dòng)化掃描
測(cè)量ACPR之前也同樣需要對(duì)發(fā)射鏈路的功率進(jìn)行配置并且手動(dòng)將頻譜儀調(diào)整到ACP測(cè)試模式下。但是不同的是,這個(gè)測(cè)量需要通過GPIB總線或TCP/IP協(xié)議使用SCPI指令通過VISA接口控制頻譜分析儀進(jìn)行,LabVIEW的框圖如圖5。
程序的最外面是一個(gè)While循環(huán)和事件結(jié)構(gòu)用于選擇觸發(fā)哪種測(cè)試模式。在ACPR掃描測(cè)試模式下,_掃描通過For循環(huán)實(shí)現(xiàn),次數(shù)由APC預(yù)定值表格的行數(shù)來確定。一個(gè)順序結(jié)構(gòu)被嵌套在For循環(huán)里實(shí)現(xiàn)分步驟操作控制,在第0,1幀通過更改芯片寄存器完成了發(fā)射鏈路的功率衰減配置,第2幀實(shí)現(xiàn)測(cè)量并存儲(chǔ)數(shù)據(jù)。
LabVIEW中實(shí)現(xiàn)儀器訪問是通過VISA接口實(shí)現(xiàn)的。在指明儀器的地址后,可以通過VISA的寫模塊發(fā)送SCPI指令,而通過讀模塊讀取儀器的反饋信息。
首先,要標(biāo)記載波的峰值功率,圖5中“DISP:WIND:TRAC:Y:RLEV 8”指令將頻譜儀的縱軸的參考功率設(shè)置為8 dBm,這樣可以將頻譜圖壓低在儀器顯示界面中以便與后面的操作:使標(biāo)記Marker1找到頻譜中的峰值,并將其讀取出來。
接著,還需要同樣的命令將縱軸參考功率設(shè)置為-6 dBm,因?yàn)樵谡麄€(gè)掃描的過程中,發(fā)射鏈路的功率由0 dB衰減到-76 dB,在衰減很大的情況下,載波信號(hào)幅度已經(jīng)很小,甚至可能被噪底所淹沒,這就需要將整個(gè)儀器的頻譜再次提高,以保證儀器ACPR計(jì)算的準(zhǔn)確性。
最后,通過“FETC:ACP?”指令將儀器測(cè)量結(jié)果存儲(chǔ)到LabVIEW的數(shù)組里面,同樣通過下標(biāo)指向要讀取的參數(shù)并將其存儲(chǔ)的CSV數(shù)據(jù)文件當(dāng)中。
4 測(cè)試結(jié)果與分析
通過測(cè)試基于RDA8206的TD-SCDMA通信系統(tǒng)發(fā)射鏈路EVM和ACPR驗(yàn)證了所提出方法的正確性。實(shí)測(cè)掃描結(jié)果如圖6,圖7所示。
實(shí)例測(cè)試表明在發(fā)射鏈路功率衰減到-50 dB時(shí)仍能保證調(diào)制質(zhì)量,所以EVM掃描可以直觀的看出數(shù)字通信系統(tǒng)發(fā)射鏈路調(diào)制質(zhì)量惡化情況分析造成問題的原因。
ACPR掃描可以用于分析載波信號(hào)功率泄漏相鄰頻段所造成的干擾狀況。本文提出的方法在保證測(cè)量精度的條件下,相對(duì)手動(dòng)操作可以將測(cè)試效率提高60%,充分發(fā)揮了自動(dòng)化儀器儀表測(cè)試的優(yōu)勢(shì)。