1996年,家喻戶曉的通用串行接口(USB1.0)初次問世,它可以支持低速(LS)模式和全速(FS)模式,分別提供1.5Mbps和12Mbps的速率。2000年,USB2.0面市,其新的高速(HS)模式可提供高達480Mbps的速率,并且依然向下兼容低速模式和全速模式。
目前,USB2.0是最普遍的通用外部數(shù)據(jù)接口之一,且事實上已成為便攜式電腦、上網(wǎng)本和臺式機等所有計算機系統(tǒng)的標(biāo)配接口。此外,諸如便攜式攝像機、數(shù)碼相機、MP3播放器、電子游戲機、DVD藍光播放器和電視機,以及手機和DSL/路由器等消費電子產(chǎn)品,也廣泛采用USB2.0接口。
2008年,30億個帶USB2.0接口的新電子設(shè)備進入市場。預(yù)計2013年將有超過40億個具備USB接口的新電子設(shè)備上市。隨著超高速應(yīng)用的發(fā)展,對具有更高數(shù)據(jù)率的外部接口的需求與日俱增,例如將外部硬盤驅(qū)動器連接至計算機。
在市場上,有些系統(tǒng)可提供比USB2.0高速模式480Mbps高得多的數(shù)據(jù)率。例如,千兆以太網(wǎng)的速度是其3倍左右,外部串行 ATA(eSATA)則可提供3Gbps的數(shù)據(jù)率(約6倍)。但所有這些系統(tǒng)均不向下兼容USB2.0接口,因為它們采用的是不同的系統(tǒng)方法。
USB3.0系統(tǒng)設(shè)計挑戰(zhàn)
2008年11月,USB3.0規(guī)范發(fā)布。USB3.0不僅包含USB2.0的全部功能(HS、FS和LS),而且可提供名為超高速 (SuperSpeed)的單獨的全新超高速數(shù)據(jù)鏈路。超高速鏈路為下載(從主機到設(shè)備,被稱為發(fā)送方向)和上傳(從設(shè)備到主機,被稱為接收方向)提供了單獨的差分數(shù)據(jù)線路。超高速模式可提供的最高數(shù)據(jù)率為5Gbps(圖1)。
USB3.0物理鏈路在主機側(cè)和設(shè)備側(cè)帶有ESD防護
圖 1:USB3.0物理鏈路在主機側(cè)和設(shè)備側(cè)帶有ESD防護。
為同時支持USB2.0功能和新的超高速模式,電纜必須采用新的結(jié)構(gòu),以提供三條差分耦合信號線(TX+/Tx-、RX+/Rx-和D+/D-)。此外,USB3.0電纜還必須具備Vcc線和GND線。這種低成本的USB3.0電纜所面臨的挑戰(zhàn),是需支持很高的截止頻率且不會在相鄰的差分耦合線對之間形成干擾(圖2a)。
USB3.0電纜結(jié)構(gòu)
圖 2a:USB3.0電纜結(jié)構(gòu)。
為支持USB3.0電纜所包含的全部線路,必須強制規(guī)定采用一種新的連接器形狀。新的USB3.0連接器的基本要求,是必須向下兼容USB2.0連接器。從ESD的角度看,這導(dǎo)致標(biāo)準(zhǔn)A連接器的超高速線路很容易發(fā)生ESD沖擊(在主機側(cè)和設(shè)備側(cè))。一種強有力的對策是在USB3.0鏈路中實現(xiàn)有效的ESD防護機制。
USB3.0電纜結(jié)構(gòu)
圖 2a:USB3.0電纜結(jié)構(gòu)。
超高速數(shù)據(jù)傳輸系統(tǒng)面臨的一個最嚴峻的問題,是確保在接收端實現(xiàn)一定程度的信號完整性。很高的信號完整性有助于實現(xiàn)很低的誤碼率(例如,對于 USB3.0超高速模式,典型誤碼率為1E-12)。眼圖描述了信號完整性的特性。在擁有無限帶寬的完美系統(tǒng)中,眼圖完全張開。在實際的系統(tǒng)中,發(fā)送和接收阻抗(90歐姆差分阻抗)以及發(fā)送側(cè)和接收側(cè)的所有寄生電容,限制了信號的上升時間/下降時間。這些寄生電容存在于USB3.0收發(fā)器內(nèi)部和/或PCB 外部。不匹配的PCB線路、USB3.0連接器或其它并聯(lián)電容器等,均會造成外部寄生電容。因此,這些額外的并聯(lián)電容器必須盡可能小。還必須考慮到USB3.0電纜的低通頻率響應(yīng)(圖2b)。為抵消高頻內(nèi)容的衰減,可在發(fā)送側(cè)和接收側(cè)利用專用均衡器改變信號。這些措施均有助于加快信號上升和下降邊的速度,從而得到張得更開的眼圖(即更高的信號完整性)(見圖3a和圖3b)。
為實現(xiàn)適當(dāng)?shù)男盘柾暾孕阅?,TVS二極管的電容必須很低,但TVS二極管也必須提供較高的ESD包含水平。
圖4a、b為整個USB3.0鏈路的眼圖模擬圖(誤碼率為1E-6)。在圖4a中,所用的接收信號是在未經(jīng)接收端均衡器處理之前。在圖4b中,所用的接收信號是經(jīng)接收端均衡器處理之后。紅色的內(nèi)輪廓線所示為用外推法得到的誤碼率為1E-12時的眼圖張開程度。紅紫色輪廓線為USB3.0技術(shù)規(guī)范中規(guī)定的超高速一致性測試的有效值。比較這兩個眼圖,在接收端使用均衡器的效果顯而易見。
圖4a:未經(jīng)接收端均衡器處理之前的信號眼圖。 圖4b:經(jīng)接收端均衡器處理之后的信號眼圖。
圖4a:未經(jīng)接收端均衡器處理之前的信號眼圖。 圖4b:經(jīng)接收端均衡器處理之后的信號眼圖。
超高速鏈路和USB2.0傳輸鏈路采用了差分耦合90歐姆線路。鏈路內(nèi)部的阻抗不匹配造成的信號反射會降低信號完整性。為避免出現(xiàn)這種情況,包括USB3.0電纜在內(nèi)的整個布局設(shè)計,應(yīng)當(dāng)實現(xiàn)90歐姆差分阻抗匹配。
為盡量減少斜率下降,并且提供相同的延遲時間,所有差分耦合線路均必須為相同的長度。對USB3.0電纜而言,這一點尤為重要。斜率下降的多會降低信號完整性,從而導(dǎo)致所謂的“差模共模信號轉(zhuǎn)換”。所產(chǎn)生的共模信號會影響EMI測試的順利進行。阻抗匹配的適當(dāng)布局設(shè)計,能避免這些問題。
USB3.0超高速鏈路和USB2.0鏈路的布局布線考慮
在整個USB3.0鏈路的布局布線設(shè)計中,應(yīng)考慮下列因素:(1)所有PCB線路和互連電纜均采用完全阻抗匹配的90歐姆差分設(shè)計。(2)必須最大限度地減少非差分耦合線路。(2)非差分耦合線路會嚴重影響眼圖的內(nèi)眼張開程度。(3)90歐姆差分耦合PCB線路的線路寬度和線路間隔不應(yīng)太窄,以避免造成額外的損耗,同時便于生產(chǎn)。從生產(chǎn)的角度而言,差分線路的理想線路寬度為0.3毫米,線路間隔為0.2毫米,這會形成200微米的電介質(zhì)高度(假設(shè)FR4,且er=4)。(4)差分耦合鏈路的正電和負電線路(包括USB3.0電纜)之間的延遲(線路長度)完全相同(最大限度地減少斜率下降)。對于保持很高的信號完整性和避免生成共模信號,這一點很重要。
圖5為具備ESD防護電路的USB3.0標(biāo)準(zhǔn)A連接器橫截面的布局布線設(shè)計示例。
具備ESD防護電路的標(biāo)準(zhǔn)A連接器USB3.0布局布線設(shè)計建議
圖 5:具備ESD防護電路的標(biāo)準(zhǔn)A連接器USB3.0布局布線設(shè)計建議。
USB3.0的新型ESD防護策略
持續(xù)不斷地減小芯片的各個組件的尺寸是降低生產(chǎn)成本、提高工作頻率的根本,但與此同時,這種微型化也產(chǎn)生了新的問題(如容易發(fā)生ESD擊穿)。因此,對提供可靠的ESD防護機制的要求與日俱增。
USB3.0可提供最高5Gbps的數(shù)據(jù)率,因此基本頻率高達2.5GHz。為實現(xiàn)很高的信號完整性,數(shù)據(jù)信號的上升時間和下降時間必須非常短。對第3諧波或第5諧波的處理,不應(yīng)發(fā)生明顯衰減。這些只能通過利用寄生效應(yīng)最小、半導(dǎo)體開關(guān)速度最快的尖端半導(dǎo)體制程才能實現(xiàn)。這種微型化半導(dǎo)體結(jié)構(gòu)的缺點,是對ESD沖擊造成的過壓的耐受能力降低。采用內(nèi)置ESD防護裝置,會引起寄生效應(yīng)(寄生電容),并且需要占用很大的片上空間。
一種十分經(jīng)濟高效的方法,是同時采用內(nèi)置ESD防護機制(集成到USB3.0收發(fā)器中),以及專為提供外部ESD防護而定制的性能增強(即高電流)應(yīng)用電路(由器件/電路設(shè)計者在電路板上實現(xiàn))。內(nèi)置ESD防護機制旨在提供器件級保護,例如,嚴格遵守HBM JEDEC JESD 22-A115要求。內(nèi)置ESD防護對在開發(fā)、生產(chǎn)和電路板裝配過程中安全地拿放器件很重要。專為該應(yīng)用定制的外部TVS二極管則按照 IEC61000-4-2標(biāo)準(zhǔn),實現(xiàn)了更加嚴格的系統(tǒng)級保護。
為提供適當(dāng)?shù)腢SB3.0系統(tǒng)級ESD防護,ESD防護器件(TVS二極管)必須滿足不同的要求??蓞⒄誌EC61000-4-2標(biāo)準(zhǔn),根據(jù)殘留箝位電壓和TVS二極管對ESD沖擊的響應(yīng),判斷TVS二極管的ESD防護性能。
TVS二極管的ESD防護性能會受TVS二極管的一些特性影響,比如最低R_on(動態(tài)電阻R_dynamic)和專為該應(yīng)用定制的最低V_breakdown。
根據(jù)經(jīng)驗,可以計算出箝位電壓(V_clamp):
為確保應(yīng)用的安全,壓敏電壓必須與所保護的線路上的最高電源電壓和最高信號電平相一致。動態(tài)電阻(R_dyn)應(yīng)當(dāng)盡可能小。結(jié)合最優(yōu)壓敏電壓和最低動態(tài)電阻,可最大限度地減小IC上的殘留ESD應(yīng)力。
可根據(jù)傳輸線路脈沖(TLP)測定值,推導(dǎo)出動態(tài)電阻(圖5)。
專為USB3.0超高速模式提供ESD防護而定制的英飛凌ESD3V3U4UL TVS二極管的TLP測定結(jié)果
圖6:專為USB3.0超高速模式提供ESD防護而定制的英飛凌ESD3V3U4UL TVS二極管的TLP測定結(jié)果。
根據(jù)TLP測定圖,可計算出動態(tài)電阻(圖6):
為對USB3.0超高速鏈路提供靜電防護,英飛凌專為該應(yīng)用定制了一只動態(tài)電阻僅為0.3歐姆左右、最高反向工作電壓為3.3V(壓敏電壓最低4V)的TVS二極管(ESD3V3U4ULC)。在測試中,16A的ESD沖擊的箝位電壓為11V,這在當(dāng)今市場上的同類產(chǎn)品中堪稱佼佼者。
備注:按照IEC61000-4-2標(biāo)準(zhǔn),所用16A TLP測試脈沖非常適合8KV接觸ESD沖擊,在30ns點上提供了16A的ESD電流。
為保護另外的USB2.0鏈路,TVS二極管必須提供稍高一些的反向工作電壓/壓敏電壓。為支持全速和低速模式,必須提供更高的壓敏電壓,從而形成最高+5V左右的信號振幅。英飛凌ESD5V3U1U和ESD5V3U2U系列可提供最低5.3V的反向工作電壓(壓敏電壓最低6V),二極管電容典型值為0.4pF。
帶ESD防護的USB3.0超高速鏈路的信號完整性
分別在帶ESD防護和未帶ESD防護的情況下,對圖1所示的整個USB3.0超高速鏈路執(zhí)行了信號完整性模擬。
整個收發(fā)部分具備90歐姆差分阻抗,考慮了發(fā)送側(cè)和接收側(cè)的寄生效應(yīng)。測得數(shù)據(jù)表明了USB3.0電纜的狀態(tài)。規(guī)定最長USB3.0電纜長度為3米。
為對USB3.0超高速鏈路提供ESD防護,在主機側(cè)和設(shè)備側(cè)均配置了英飛凌ESD3V3U4ULC。ESD3V3U4ULC具備卓越的ESD防護性能,并且二極管電容(二極管對地)極低,典型值為0.5pF。
在模擬中考慮了USB3.0超高速鏈路的基本布局布線設(shè)計規(guī)則(見圖5)
在對整條USB3.0超高速鏈路執(zhí)行的信號完整性模擬中,按照USB3.0一致性測試標(biāo)準(zhǔn)參數(shù),實現(xiàn)了發(fā)送側(cè)信號去加重和接收端均衡器,并分析了經(jīng)接收端均衡器處理之后的超高速信號的眼圖。模擬所用誤碼率為1E6。根據(jù)模擬結(jié)果,推導(dǎo)出誤碼率為1E12時的眼圖張開程度(紅色和藍色輪廓線)。
分別在未帶TVS二極管(紅色輪廓線)和帶有TVS二極管(ESD3V3U4ULC,藍色輪廓線)的情況下,計算出眼圖的張開程度(圖7)。
在主機側(cè)和設(shè)備側(cè)帶和未帶ESD3V3U4ULC時的眼圖
圖7:在主機側(cè)和設(shè)備側(cè)帶和未帶ESD3V3U4ULC時的眼圖。
在主機側(cè)和設(shè)備側(cè)帶有超低電容TVS二極管ESD3V3U4ULC,眼圖張開程度(輪廓線)會受到一定影響。雖然眼圖張開程度會略微減小,但相比于USB3.0技術(shù)規(guī)范中規(guī)定的基準(zhǔn)模式(紅紫色輪廓線),仍大出許多。
本文小結(jié)
必須精心設(shè)計USB3.0鏈路,以實現(xiàn)最優(yōu)系統(tǒng)級ESD防護性能,并且強制要求實現(xiàn)毫厘不差的信號完整性。為同時滿足這兩個要求,ESD防護器件必須具有卓越的ESD防護性能和很低的器件電容。采用“陣列”配置的英飛凌ESD3V3U4ULC,結(jié)合清楚明了的布局布線設(shè)計和高質(zhì)量鏈路 (USB3.0電纜),能夠?qū)崿F(xiàn)上述要求。