當前位置:首頁 > 測試測量 > 測試測量
[導讀]現(xiàn)在,越來越多的汽車配有ESC(電子穩(wěn)定控制)功能,在單個芯片中集成了組合式低g加速度計和陀螺儀。這樣做是為了防止汽車側滑和翻車;如今,ESC功能已經(jīng)成為世界各國或地區(qū)法律的強制要求。如果通過組

 

現(xiàn)在,越來越多的汽車配有ESC(電子穩(wěn)定控制)功能,在單個芯片中集成了組合式低g加速度計和陀螺儀。這樣做是為了防止汽車側滑和翻車;如今,ESC功能已經(jīng)成為世界各國或地區(qū)法律的強制要求。如果通過組合器件(單芯片、組合式加速度計和陀螺儀)實現(xiàn)傾角測量,則不必在車上安裝一個獨立的EPB模塊,結果可以大幅降低汽車的成本。由于組合器件通常用于ESC,所以并未針對傾角檢測優(yōu)化,并且通過組合器件測量傾角時,測量精度有時無法達到要求。由于組合器件是XY軸或XYZ軸,所以通常用X軸進行傾角測量,EPB模塊中的部分傳統(tǒng)型低-g加速度計使用的是Z軸,因為它是垂直安裝在發(fā)動機艙里的。檢測軸應該與重力垂直,才能取得更高的精度——我們稍后會討論這一點。

 

圖1. X軸和Z軸加速度計的安裝示意圖。

 

對于汽車中的傾角測量,評估精度是非常重要的。不妨想像,您的車停在絕對平坦的地面,因此,加速度計計算的傾角應該是0°。如果您的車停在斜坡上,就應該精確地檢測出傾角,以便正確地激活剎車系統(tǒng)。

 

圖2. X軸檢測傾角測量示意圖。

 

 

其中:

 

AOUT 為加速度計的輸出,單位為g。

 

θ 為斜坡的傾角,單位為度。

 

圖3. sin θ對θ隨θ增大而下降的靈敏度。

 

由于sin θ是一個非線性函數(shù),所以,AOUT與θ之間的關系是非線性 的,在接近零時其線性度處于最佳狀態(tài),即其此時具有最佳的測量精度。隨著θ的增大,測量精度下降。這正是檢測軸應與重力垂直的原因,因為道路坡度將接近零

 

對于汽車傾角測量,不必在全斜坡坡度的條件下考慮系統(tǒng)?,F(xiàn)實世界中,道路上的絕大多數(shù)斜坡坡度不會超過30°。我們只需要分析在±30°的范圍內(nèi)分析貢獻因素的精度即可。

 

影響系統(tǒng)級測量精度的貢獻因素有多個:

 

* 靈敏度誤差和初始絕對失調(diào)

* 非線性度

* 與初始絕對失調(diào)的總失調(diào)變化

* 噪聲

 

靈敏度誤差和初始絕對失調(diào)

 

靈敏度誤差

 

靈敏度是對輸入-輸出測得的傳遞函數(shù)的斜率,通常為+1g和–1g。靈敏度誤差為器件間的靈敏度偏差。例如,有些加速度計的最大靈敏度為3%。

 

圖4. 輸入-輸出加速度靈敏度誤差。

 

初始絕對失調(diào)

 

范圍內(nèi)的失調(diào)約為25°C;例如,在模塊制造完成后立即測量的值為25°C ± 5°C。初始絕對失調(diào)表示大量器件的實測偏移值的標準差。

 

兩點校準

 

對于傾角測量應用,兩個主要的誤差來自失調(diào)誤差和靈敏度誤差。這兩種誤差會導致不可接受的檢測結果,因此不得忽略。如果我們希望消除這些部分誤差,則應對加速度輸出進行校準。一般地,要對傾角測量的失調(diào)和靈敏度進行一次校準。若要考慮失調(diào)和靈敏度誤差,則加速度計輸入與輸出的關系為:

 

 

其中:

 

  • A輸出 為失調(diào)誤差,單位為g。

  • 增益為加速度計的增益,理想值為1。

  • A實際為施加于加速度計的實際加速度,單位為g。

 

有兩種基本校準技術;其中一種是單點校準。這種校準的具體做法是在加速度計上施加一個0g場,然后測量輸出。這類校準只能用于校準失調(diào)誤差,不能校準增益誤差。然后,從實際輸出值中減去0g場里的輸出結果,消除失調(diào)誤差。這種校準方法非常簡單,但精度不足,因為仍然存在靈敏度誤差。另一種方法是1g翻轉校準,在+1g和–1g時采用兩點校準,并在每個+1g和–1g場內(nèi)按照以下公式測量加速度輸出:

 

 

其中,失調(diào)A失調(diào)的單位為g。

 

以這兩點信息為基礎,可以按照以下方法解出失調(diào)和增益:

 

 

其中,+1g和 1g測量值、A+1g和A–1g均以g為單位。

 

經(jīng)過這一次校準以后,可以用該等式計算實際加速度,每次都會消除失調(diào)誤差和靈敏度誤差。

 

 

其中,A失調(diào)和A輸出以g為單位。

 

非線性度

 

器件的非線性度為測得加速度(AMEA)與理想線性輸出加速度(AFIT)之間的最大偏差。加速度測量數(shù)據(jù)集應包括加速度計的滿量程范圍。其測量方式為Max(|AMEA – AFIT|)。

 

圖5. 器件非線性度。

 

其中:

 

AMEA為給定gn下的測得加速度。

 

AFIT 為給定gn下的預測加速度。

 

多數(shù)加速度計或組合器件在給定輸入加速度計范圍內(nèi)均存在非線性——例如,30 mg ± 2g的范圍。對于傾角測量應用,輸入坡道斜率在±30°以內(nèi),這意味著輸出加速度范圍在±500 mg (±1g× sin 30°)以內(nèi),所以應重新評估該范圍內(nèi)的非線性度。由于非線性度在整個輸入范圍內(nèi)是非線性的,所以,很難準確地量化評估這部分誤差。然而,由于該器件的數(shù)據(jù)手冊通常都很保守,線性度為30 mg,輸入范圍為±2g,用10 mg計算±500 mg范圍內(nèi)的誤差更合理些。

 

與初始絕對失調(diào)的總失調(diào)變化

 

與初始絕對失調(diào)的總失調(diào)變化為溫度、應力和老化效應導致的失調(diào)的最大偏差。該偏差是相對于給定器件的初始絕對失調(diào)進行測量的。這是精度總誤差的主要貢獻因素。

 

在溫度、應力、老化等所有這些因素中,變化與溫度在總失調(diào)變化中占比很大。一般地,變化與溫度曲線是二階曲線,通常為旋轉拋物線。為了消除這部分誤差,可以在系統(tǒng)級執(zhí)行三點校準。對于給定器件,可按下列步驟校準輸出失調(diào)隨溫度的變化值。

 

第1步:

 

使器件的輸出響應以某個 ?N0值偏移。溫度校準流程的第一步是 消除環(huán)境溫度下的失調(diào)。

 

圖6. 第1步:消除環(huán)境溫度下的失調(diào)。

 

圖7. 第2步:在消除環(huán)境溫度下的失調(diào)之后。

 

第2步:

 

接下來,在高溫下測試器件,用獲得的新信息生成失調(diào)校正線性公式。

 

圖8. 第3步:消除高溫下的拋物線旋轉分量。

 

圖9. 第4步:在消除高溫下的拋物線旋轉分量之后。

 

第3步:

 

給現(xiàn)有公式添加一個二階分量,校正失調(diào)剩余部分。設二階曲線遵循以下公式:

 

 

這是二階拋物線公式,已經(jīng)通過第1步和第2步消除了旋轉分量。

 

在該公式中,該二階拋物線有三個解:

 

 

然后,我們可以得到溫度系數(shù) a, b, c.

 

圖10. 第5步:添加二階分量,消除剩余失調(diào)。

 

有關?N0, ?N1, ?N2, a, b, c 的所有溫度系數(shù)信息應該存儲在系統(tǒng)非易失性存儲器中,同時需要一個板載溫度傳感器。系統(tǒng)會在每次上電后例行校準加速度計,確保消除失調(diào)隨溫度的變化值。

 

噪聲

 

基于單個數(shù)據(jù)樣本測量傾角不一定可靠。即使加速度計的噪聲為零,傾角測量也是在汽車啟動時測量的,所以,需要減小發(fā)動機、過往車輛或乘客在車上來回移動導致的任何振動。最好的辦法是在不降至最低數(shù)據(jù)速率要求的條件下,在盡量長的時間內(nèi)做數(shù)據(jù)平均。數(shù)據(jù)平均算法會減少rms噪聲。

 

假如我們對噪聲采樣,結果可得到每個樣本的方差

 

 

求一個隨機變量的均值,獲得以下方差,

 

 

由于噪聲方差保持于σ2不變,

 

 

以上推導顯示,對同一未校正噪聲的n次實現(xiàn)求均值可使噪聲功率減少n倍,并使rms噪聲減少√n。

 

由于隨機噪聲受高斯分布影響,所以,rms噪聲等于高斯分布的標準差。6σ以內(nèi)的最小分布為97%。

 

例如,如果以1 kSPS的采樣率對每100 ms的數(shù)據(jù)求均值,則最大rms噪聲 = 0.4 mg,即是說如果以6σ作為與平均值的距離,則此時的峰值噪聲僅為2.4 mg。

 

用于與rms值相乘的因數(shù)取決于器件要執(zhí)行的任務的統(tǒng)計需求。例如,如果選擇6作為因數(shù)(峰峰值噪聲為6 × RMS_Noise),則算法在器件生命周期內(nèi)要運行的次數(shù)會影響超過最差情況6 × RMS_Noise 的概率??煽偨Y如下:

 

 

E為在生命周期內(nèi)超過最差情況的預期次數(shù),M為生命周期內(nèi)的運行次數(shù),r為超過最差情況的概率?;诖耍覀兛梢酝ㄟ^乘以rms噪聲評估出一個合理的因數(shù)。

 

小結

 

以ADI公司的ADXC1500/ADXC1501(組合式陀螺儀和2軸/3軸加速度 計)為例,所有誤差貢獻項均列于表1中,包括校準和不校準兩種情況。我們可以假設,總失調(diào)變化為二次曲線,并且其在溫度范圍內(nèi)的變化占總失調(diào)變化的80%。另外,以6為因數(shù)乘以最大rms噪聲。

 

一個陀螺儀和一個三軸加速度計的單芯片集成方案可以實現(xiàn)多種新型應用,尤其是在汽車安全系統(tǒng)和工業(yè)自動化應用領域。為了設計更加可靠、高精度的汽車安全系統(tǒng),例如,穩(wěn)定的電子控制系統(tǒng)(ESC)和側翻檢測系統(tǒng),盡量減少系統(tǒng)誤差至關重要。汽車中已安裝這些傳統(tǒng)型底盤控制系統(tǒng),包括防抱死制動系統(tǒng)、牽引控制和偏航控制系統(tǒng)。

 

表1. 校準前后的誤差貢獻

 

 

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉