最實(shí)用的GPS接收器測(cè)試詳解
概覽
從波音 747 客機(jī)的導(dǎo)航操作、汽車駕駛每天都會(huì)使用的 GPS 導(dǎo)航系統(tǒng),到尋寶者要找到深藏于森林某處的寶藏,GPS 技術(shù)已經(jīng)迅速融入于多種應(yīng)用中。正當(dāng)創(chuàng)新技術(shù)不斷提升GPS 接收器效能的同時(shí),相關(guān)的技術(shù)特性亦越來越完整。時(shí)至今日,軟件甚至可建立 GPS 波形,以精確仿真實(shí)際的訊號(hào)。除此之外,儀器總線技術(shù)亦不斷提升,目前即可透過PXI 儀控功能,以記錄并播放實(shí)時(shí)的 GPS 訊號(hào)。
介紹
由于 GPS 技術(shù)已于一般商用市場(chǎng)逐漸普及,因此多項(xiàng)設(shè)計(jì)均著眼于提升相關(guān)特性,如:
1) 降低耗電量
2) 可尋找微弱的衛(wèi)星訊號(hào)
3) 較快的擷取次數(shù)
4) 更精確的定位功能
透過此應(yīng)用說明,將可了解進(jìn)行多項(xiàng) GPS 接收器量測(cè)的方法:敏感度、噪聲系數(shù)、定位精確度、首次定位時(shí)間,與位置誤差。此篇技術(shù)文件是要能讓工程師徹底了解 GPS 的量測(cè)技術(shù)。對(duì)剛開始接觸 GPS 接收器量測(cè)作業(yè)的工程師來說,可對(duì)常見的量測(cè)作業(yè)略知一二。若工程師已具有 GPS 量測(cè)的相關(guān)經(jīng)驗(yàn),亦可透過此篇技術(shù)文件初步了解新的儀控技術(shù)。此篇應(yīng)用說明將分為下列數(shù)個(gè)段落:
GPS 技術(shù)的基礎(chǔ)
GPS 量測(cè)系統(tǒng)
常見量測(cè)概述
敏感度
首次定位時(shí)間 (TTFF)
定位精確度與重復(fù)性
追蹤精確度與重復(fù)性
每個(gè)段落均將提供數(shù)項(xiàng)實(shí)作秘訣與技巧。更重要的是,讀者可將自己的結(jié)果與 GPS 接收器獲得的結(jié)果進(jìn)行比較。透過自己的結(jié)果、接收器的結(jié)果,再搭配理論量測(cè)的結(jié)果,即可進(jìn)一步檢視自己的量測(cè)數(shù)據(jù)。
GPS 導(dǎo)航系統(tǒng)介紹
全球定位系統(tǒng) (GPS) 為空間架構(gòu)的無(wú)線電導(dǎo)航系統(tǒng),本由美國(guó)空軍所研發(fā)。雖然 GPS 原是開發(fā)做為軍事定位系統(tǒng)之用,卻也對(duì)民間產(chǎn)生重要影響。事實(shí)上,您目前就可能在車輛、船舶,甚至移動(dòng)電話中使用 GPS 接收器。GPS 導(dǎo)航系統(tǒng)包含由 24 組衛(wèi)星,均以 L1 與 L2 頻帶 (Band) 進(jìn)行多重訊號(hào)的傳輸。透過 1.57542 GHz 的 L1 頻帶,各組衛(wèi)星均產(chǎn)生 1.023 Mchips BPSK (二進(jìn)制相位鍵移) 的展頻訊號(hào)。展頻序列則使用稱為 C/A (coarse acquisition) 碼的虛擬隨機(jī)數(shù) (PN) 序列。雖然展頻序列為 1.023 Mchips,但實(shí)際的訊號(hào)數(shù)據(jù)傳輸率為 50 Hz [1]。在系統(tǒng)的原始布署作業(yè)中,一般 GPS 接收器可達(dá) 20 ~ 30 公尺以上的精確度誤差。此種誤差肇因于美國(guó)軍方依安全理由所附加的隨機(jī)頻率誤差所致。然而,此稱為選擇性可靠度 (Selective availability) 誤差訊號(hào)源,已于 2000 年 5 月 2 日取消。在今天,接收器的最大誤差不超過 5 公尺,而一般誤差已降至 1 ~ 2 公尺。
不論是 L1 或 L2 (1.2276 GHz) 頻帶,GPS 衛(wèi)星均會(huì)產(chǎn)生所謂的「P 碼」附屬訊號(hào)。此訊號(hào)為 10.23 Mbps BPSK 的調(diào)變訊號(hào),亦使用 PN 序列做為展頻碼。軍方即透過 P 碼的傳輸,進(jìn)行更精確的定位作業(yè)。在 L1 頻帶中,P 碼是透過 C/A 碼進(jìn)行反相位 (Out of phase) 的 90 度傳輸,以確??捎谙嗤d波上測(cè)得此 2 種訊號(hào)碼 [2]。P 碼于 L1 頻帶中可達(dá) -163 dBW 的訊號(hào)功率;于 L2 頻帶中可達(dá) -166 dBW。相對(duì)來說,若在地球表面的 C/A 碼,則可于 L1 頻帶中達(dá)到最小 -160 dBW的廣播功率。
GPS 導(dǎo)航訊號(hào)
針對(duì) C/A 碼來說,導(dǎo)航訊號(hào)是由數(shù)據(jù)的 25 個(gè)框架(Frame) 所構(gòu)成,而每個(gè)框架則包含 1500 個(gè)位 [2]。此外,每組框架均可分為 5 組 300 個(gè)位的子框架。當(dāng)接收器擷取 C/A碼時(shí),將耗費(fèi) 6 秒鐘擷取 1 個(gè)子框架,亦即 1 個(gè)框架必須耗費(fèi) 30 秒鐘。請(qǐng)注意,其實(shí)某些較為深入的量測(cè)作業(yè),才有可能真正花費(fèi) 30 秒鐘以擷取完整框架;我們將于稍后討論之。事實(shí)上,30 秒鐘僅為擷取完整框架的平均最短時(shí)間;系統(tǒng)的首次定位時(shí)間 (TTFF) 往往超過 30 秒鐘。
為了進(jìn)行定位作業(yè),大多數(shù)的接收器均必須更新衛(wèi)星星歷 (Almanac) 與星歷表 (Ephemeris) 的信息。該筆信息均包含于人造衛(wèi)星所傳輸?shù)挠嵦?hào)數(shù)據(jù)中,,而每個(gè)子框架亦包含專屬的信息集。一般來說,我們可透過子框架的類別,進(jìn)而辨識(shí)出其中所包含的信息 [2][7]:
Subframe 1: 包含時(shí)序修正 (Clock correction)、精確度,與人造衛(wèi)星的運(yùn)作情形
Subframes 2-3: 包含精確的軌道參數(shù),可計(jì)算衛(wèi)星的確實(shí)位置
Subframes 4-5: 包含粗略的衛(wèi)星軌道數(shù)據(jù)、時(shí)序修正,與運(yùn)作信息。
而接收器必須透過衛(wèi)星星歷與星歷表的信息,才能夠進(jìn)行定位作業(yè)。一旦得到各組衛(wèi)星的確實(shí)距離,則高階 GPS 接收器將透過簡(jiǎn)單的三角表達(dá)式 (Triangulation algorithm)回傳位置信息。事實(shí)上,若能整合虛擬距離 (Pseudorange) 與衛(wèi)星位置的信息,將可讓接收器精確識(shí)別其位置。
不論是使用 C/A 碼或 P 碼,接收器均可追蹤最多 4 組人造衛(wèi)星,進(jìn)行 3D 定位。追蹤人造衛(wèi)星的過程極為復(fù)雜,不過簡(jiǎn)單來說,即是接收器將透過每組衛(wèi)星的距離,估算出自己的位置。由于訊號(hào)是以光速 (c),或?yàn)?299,792,458 m/s 行進(jìn),因此接收器可透過下列等式計(jì)算出與人造衛(wèi)星之間的距離,即稱為「虛擬距離 (Pseudorange)」:
等式 1.「虛擬距離 (Psedorange)」為時(shí)間間隔 (Time interval) 的函式 [1][4]
接收器必須將衛(wèi)星所傳送的訊號(hào)數(shù)據(jù)進(jìn)行譯碼,才能夠獲得定位信息。每個(gè)衛(wèi)星均針對(duì)其位置進(jìn)行廣播 (Broadcasting),接收器跟著透過每組衛(wèi)星之間的虛擬距離差異,以決定自己的確實(shí)位置 [8]。接收器所使用的三角量測(cè)法 (Triangulation),可由 3 組衛(wèi)星進(jìn)行 2D 定位;4 組衛(wèi)星則可進(jìn)行 3D 定位。
設(shè)定 GPS 量測(cè)系統(tǒng)
測(cè)試 GPS 接收器的主要產(chǎn)品,為 1 組可仿真 GPS 訊號(hào)的 RF 向量訊號(hào)產(chǎn)生器。在此應(yīng)用說明中,讀者將可了解應(yīng)如何使用 NI PXI-5671 與 NI PXIe-5672 RF 向量訊號(hào)產(chǎn)生器,以達(dá)到量測(cè)目的。此產(chǎn)品并可搭配 NI GPS 工具組,以模擬 1 ~ 12 組 GPS 人造衛(wèi)星。
完整的 GPS 量測(cè)系統(tǒng)亦應(yīng)包含多種不同配件,以達(dá)最佳效能。舉例來說,外接的固定式衰減器 (Attenuator),可提升功率精確度與噪聲層 (Noise floor) 的效能。此外,根據(jù)接收器是否支持其直接輸入埠的 DC 偏壓 (Bias),某些接收器亦可能需要 DC 阻絕器 (Blocker)。下圖即為 GPS 訊號(hào)產(chǎn)生的完整系統(tǒng):
圖 1. GPS 產(chǎn)生系統(tǒng)的程序圖
如圖 1 所示,當(dāng)測(cè)試 GPS 接收器時(shí),往往采用最高 60 dB 的外接 RF 衰減 (留白,Padding)。固定式衰減器至少可提供量測(cè)系統(tǒng) 2 項(xiàng)優(yōu)點(diǎn)。首先,固定式衰減器可確保測(cè)試激發(fā)的噪聲層低于 -174 dBm/Hz 的熱噪聲層 (Thermal noise floor)。其次,由于可透過高精確度 RF 功率計(jì) (Power meter) 校準(zhǔn)訊號(hào)準(zhǔn)位,因此固定式衰減器亦可提升功率精確度。雖然僅需 20 dB 的衰減即可符合噪聲層的要求,但若使用 60 ~ 70 dB 的衰減,則可達(dá)到更高的功率精確度與噪聲層效能。稍后將接著討論 RF 功率校準(zhǔn),而圖 2 搶先說明衰減對(duì)噪聲層效能所造成的影響。
表1. 不同衰減所需的儀器功率比較
如表1所示,衰減可用于減弱噪聲,而不僅限于 -174 dBm/Hz 的熱噪聲層。
RF 向量訊號(hào)產(chǎn)生器
當(dāng)選擇 RF 向量訊號(hào)產(chǎn)生器時(shí),NI LabVIEW GPS 工具組可同時(shí)支持 NI PXI-5671 與 NI PXIe-5672 RF 向量訊號(hào)產(chǎn)生器。雖然此 2 款適配卡可產(chǎn)生 GPS 訊號(hào),但由于 PCI Express 總線速度較快,并可立刻進(jìn)行 IF 等化 (Equalization),因此 NI PXIe-5672 向量訊號(hào)產(chǎn)生器較受到青睞。此 2 款適配卡均具有 6 MB/s 總數(shù)據(jù)傳輸率與 1.5 MS/s (IQ) 取樣率,可從磁盤串流 GPS 波形。
雖然 PXI控制器硬盤可輕松維持此數(shù)據(jù)傳輸率,NI 仍建議使用外接磁盤進(jìn)行額外的儲(chǔ)存容量。下圖為包含 NI PXIe-5672 的常見 PXI 系統(tǒng):
圖 2. 包含 NI PXIe 5672 VSG 與 NI PXI-5661 VSA 的 PXI 系統(tǒng)
GPS 工具組可于完整導(dǎo)航訊號(hào)期間,建立最長(zhǎng) 12.5 分鐘 (25 個(gè)框架) 的波形。依 6 MB/s 的取樣率,則最大檔案約為 7.5 GB。由于上述的波形檔案尺寸,所有的波形均可儲(chǔ)存于多款硬盤選項(xiàng)之一。這些波形儲(chǔ)存資源選項(xiàng)包含:
PXI 控制器的硬盤 ( 推薦使用 120 GB 硬盤升級(jí))
如 HDD 8263 與 HDD 8264 的外接 RAID 裝置
外接 USB 2.0 硬盤 (已透過 Western Digital Passport 硬盤進(jìn)行測(cè)試)
上述各種硬盤設(shè)定,均可支持超過 20 MB/s 的連續(xù)數(shù)據(jù)串流作業(yè)。因此,任何儲(chǔ)存選項(xiàng)均可仿真 GPS 訊號(hào),并進(jìn)行記錄與播放。在稍后的段落中,將說明仿真與記錄 GPS 波形的整合作業(yè),并進(jìn)行 GPS 接收器效能的特性參數(shù)描述 (Characterization) 作業(yè)。
建立仿真的 GPS 訊號(hào)
由于 GPS 接收器是透過天線傳輸數(shù)據(jù),并取得衛(wèi)星星歷與星歷信息;當(dāng)然,仿真的 GPS 訊號(hào)亦需要該項(xiàng)信息。衛(wèi)星星歷與星歷信息,均透過文本文件表示,可提供衛(wèi)星位置、衛(wèi)星高度、機(jī)器狀態(tài),與繞行軌道的相關(guān)信息。此外,在建立波形的過程中M,亦必須選擇客制參數(shù),如星期時(shí)間 (TOW)、位置 (經(jīng)度、緯度、高度),與仿真的接收器速率。以此信息為基礎(chǔ),工具組將自動(dòng)選擇最多 12 組人造衛(wèi)星、計(jì)算所有的都卜勒位移 (Doppler shift) 與虛擬距離 (Pseudorange) 信息,并接著產(chǎn)生所需的基頻波形。為了可盡快入門,工具組安裝程序亦包含范例的衛(wèi)星星歷與星歷檔案。此外,更可由下列網(wǎng)站直接下載:
Almanac information (The Navigation Center of Excellence) http://navcen.uscg.gov/gps/almanacs.htm
Ephemeris information (NASA Goddard Space Flight Center) http://cddis.gsfc.nasa.gov/gnss_datasum.html#brdc
透過客制的衛(wèi)星星歷與星歷檔案,即可建立特定日期與時(shí)間的 GPS 訊號(hào),甚至可回溯數(shù)年以前。請(qǐng)注意,當(dāng)選擇這些檔案時(shí),必須選擇與日期相對(duì)應(yīng)的檔案。一般來說,衛(wèi)星星歷與星歷信息為每日更新,因此當(dāng)選擇特定時(shí)間與日期時(shí),亦應(yīng)選擇同 1 天的檔案。下載的星歷檔案往往為壓縮的「*.Z」格式。因此,在搭配使用 GPS 工具組之前,檔案必須先行解壓縮。
只要使用工具組中的「自動(dòng)模式 (Automatic mode)」,即可囊括大多數(shù)的 GPS 模塊作業(yè),并可透過程序設(shè)計(jì)的方式,計(jì)算都卜勒與隨機(jī)距離信息;當(dāng)然,此功能亦提供手動(dòng)模式。在手動(dòng)模式 (Manual mode) 中,使用者可個(gè)別指定每組人造衛(wèi)星的信息。圖 4 即顯示此 2 種作業(yè)模式所提供的輸入?yún)?shù)。
1LLA (longitude, latitude, altitude)
表2. GPS 工具組自動(dòng)與手動(dòng)模式的默認(rèn)值
請(qǐng)注意,工具組將根據(jù)所指定的星歷檔案,于可能的數(shù)值范圍中強(qiáng)制設(shè)定 GPS 的 TOW。因此,若選擇的數(shù)值超出該星歷檔案的范圍,工具組將自動(dòng)設(shè)定為最接近的數(shù)值并提醒使用者。「niGPS Write Waveform To File」范例程序即可建立 GPS 基頻波形 (自動(dòng)模式),而其人機(jī)接口即如下圖所示。
圖 3. 簡(jiǎn)單的范例程序即可建立 GPS 測(cè)試波形。
請(qǐng)注意,某些特定量測(cè)作業(yè),將決定用戶所建立 GPS 測(cè)試的文件類型。舉例來說,當(dāng)量測(cè)接收器敏感度時(shí),將仿真單一人造衛(wèi)星。另一方面來說,需要定位作業(yè)的量測(cè) (如TTFF 與位置精確度),所使用的 GPS 訊號(hào)將仿真多組人造衛(wèi)星?;谏鲜鲂枨?,NI GPS 工具組所搭配的范例程序,將同時(shí)包含單位星與多重衛(wèi)星仿真功能。
記錄空氣中的 GPS 訊號(hào)
建立 GPS 波形時(shí),其獨(dú)特又日趨普遍的方式,即是直接從空氣中擷取
單一衛(wèi)星敏感度量測(cè)
在了解敏感度量測(cè)的基本理論之后,接著將進(jìn)行實(shí)際量測(cè)的各個(gè)程序。一般測(cè)試系統(tǒng)均是透過直接聯(lián)機(jī),將模擬的 L1 單一衛(wèi)星載波送入至 DUT 的 RF 通訊端口中。為了獲得C/N 比值,我們將接收器設(shè)定透過 NMEA-183 協(xié)議進(jìn)行通訊。在 LabVIEW 中,則僅需串聯(lián) 3 筆 GSV 指令,即可讀取最大的衛(wèi)星 C/N 值。
根據(jù) GPS 規(guī)格說明,單一 L1 衛(wèi)星若位于地球表面,則其功率應(yīng)不低于 -130 dBm [7]。然而,消費(fèi)者對(duì)室內(nèi)與戶外的 GPS 接收器使用需求,已進(jìn)一步壓低了測(cè)試限制。事實(shí)上,多款 GPS 接收器可達(dá)最低 -142 dBm 定位追蹤敏感度,與最低 -160 dBm 訊號(hào)追蹤。在一般作業(yè)點(diǎn) (Operating point) 時(shí),大多數(shù)的 GPS 接收器均可迅速持續(xù)鎖定低于6dB 的訊號(hào),因此我們的測(cè)試激發(fā)則使用 -136dBm 的平均 RF 功率強(qiáng)度。
若要達(dá)到最佳的功率精確度與噪聲水平 (Noise floor) 效能,則建議針對(duì) RF 向量訊號(hào)產(chǎn)生器的輸出,使用外接衰減。在大多數(shù)的案例中,40 dB ~ 60 dB 的外接衰減,可讓我們更接近線性范圍 (功率 ≥ -80 dBm),妥善操作產(chǎn)生器。由于各組接收器的定位衰減 (Fix attenuation) 均不甚固定,因此必須先行校準(zhǔn)系統(tǒng),以決定測(cè)試激發(fā)的正確功率。
在校準(zhǔn)程序中,我們可考慮:1) 訊號(hào)的峰值平均比 (Peak-to-average ratio)、衰減器各個(gè)部分的差異,還有任何接線作業(yè)可能的插入損耗 (Insertion loss)。為了校準(zhǔn)系統(tǒng),應(yīng)先從 DUT 切斷聯(lián)機(jī),再將該聯(lián)機(jī)接至 RF 向量訊號(hào)分析器 (如 PXI-5661)。
Part A:?jiǎn)我恍l(wèi)星校準(zhǔn)
當(dāng)執(zhí)行敏感度量測(cè)時(shí),RF 功率強(qiáng)度的精確性,實(shí)為訊號(hào)產(chǎn)生器最重要的特性之一。由于接收器可獲得 0 數(shù)字精確度的 C/N 值 (如 34 dB-Hz),因此生產(chǎn)測(cè)試中的敏感度量測(cè)可達(dá) ± 0.5 dB 的功率精確度。因此,必須確保我們的儀控功能至少要達(dá)到相等或以上的效能。由于一般 RF 儀控作業(yè)是專為大范圍功率強(qiáng)度、頻率范圍,與溫度條件所設(shè)計(jì),因此在執(zhí)行基本系統(tǒng)校準(zhǔn)時(shí),量測(cè)的可重復(fù)性 (Repeatability) 應(yīng)遠(yuǎn)高于特定儀器效能。下列章節(jié)將進(jìn)一步說明可確保 RF 功率精確度的 2 種方法。
方法 1:?jiǎn)我槐粍?dòng)式 RF 衰減器:
雖然使用外接衰減,是為了確保 GPS 訊號(hào)產(chǎn)生作業(yè)可達(dá)最佳噪聲密度,但實(shí)際僅需 20 dB 的衰減,即可確保噪聲密度低于 -174 dBm/Hz。當(dāng)使用 20 dB 的固定板 (Pad) 時(shí),僅需將儀器設(shè)定為超過 20 dB 的 RF 功率強(qiáng)度即可。為了達(dá)到 -136 dBm 的目標(biāo),儀器應(yīng)程序設(shè)計(jì)為 -115 dBm (假設(shè) 1 dB 的連接線插入損耗),且將 20 dB 衰減器直接連至產(chǎn)生器的輸出。則所達(dá)到的 RF 功率將為 -136 dBm,但仍具有額外的不確定性。假設(shè) 20 dB 的固定板具有 ± 0.25 dB 的不確定性,且 RF 產(chǎn)生器亦于 -116 dBm 具有 ± 1.0 dB 的不確定性,則整體的不確定性將為 ± 1.25 dB。因此,雖然方法 1 最為簡(jiǎn)單且不需進(jìn)行校準(zhǔn),但由于系統(tǒng)中的多項(xiàng)組件均未經(jīng)過校準(zhǔn),因此可能接著發(fā)生不確定性。請(qǐng)注意,造成儀器不確定性最主要的原因之一,即為電壓駐波比 (Voltage standing wave ratio,VSWR)。因?yàn)楸粍?dòng)式衰減器是直接連至儀器的輸出,所以反射回儀器的駐波即為實(shí)際衰減。由于降低了功率的不確定性,因此可提升整體功率的精確性。
請(qǐng)注意,此處亦使用高效能 VNA 確實(shí)量測(cè)被動(dòng)衰減器。透過此量測(cè)裝置,即可于 ± 0.1 dB 的不確定性之內(nèi),決定所要套用的衰減。
方法 2:經(jīng)過校準(zhǔn)的多組被動(dòng)衰減器
校準(zhǔn) RF 功率的第二種方法,即是使用高精確度的 RF 功率計(jì) (高于 ± 0.2 dB 的精確度,并最低可達(dá) -70 dBm) 搭配多款固定式衰減器。因?yàn)槲覀兪且怨潭l率,與相對(duì)較小的功率范圍操作 RF 產(chǎn)生器,所以可有效修正由產(chǎn)生器造成的任何錯(cuò)誤。此外,由于被動(dòng)衰減器是以固定頻率進(jìn)行線性動(dòng)作,因此亦可校準(zhǔn)其不確定性。在方法 2 中,主要即必須確保產(chǎn)生系統(tǒng)可達(dá)到最佳效能,且將不確定性降至最低。此高精確度功率計(jì)可達(dá)優(yōu)于 80 dB 的動(dòng)態(tài)范圍 (往往為雙頭式儀器),進(jìn)而確保最低的量測(cè)不確定性。
透過高精確度的功率計(jì),即可使用 3 種量測(cè)作業(yè)進(jìn)行系統(tǒng)校準(zhǔn):1 種用于向量訊號(hào)產(chǎn)生器的 RF 功率,另外 2 種量測(cè)作業(yè)可校準(zhǔn)衰減器。為了達(dá)到最佳的不確定性,則應(yīng)設(shè)定系統(tǒng)所需的最少量測(cè)次數(shù)。若要達(dá)到 -136 dBm 的 RF 功率強(qiáng)度,則可將 RF 儀器程序設(shè)計(jì)為 -65 dBm 的功率強(qiáng)度,并使用 70 dB 固定衰減 (假設(shè) 1 dB 插入損耗)。為了確實(shí)進(jìn)行 RF 功率強(qiáng)度的程序設(shè)計(jì)作業(yè),則可透過固定的 Padding 校準(zhǔn)實(shí)際衰減。校準(zhǔn)程序如下:
1) 將 VSG 程序設(shè)計(jì)為+15 dBm 功率強(qiáng)度
可開啟 Measurement and Automation Explorer (MAX) 并使用測(cè)試面板。透過測(cè)試面板以 +15 dBm 產(chǎn)生 1.58 GHz 連續(xù)波 (CW) 訊號(hào)。
2) 以高精確度的功率計(jì)量測(cè) RF 功率
使用 RF 功率計(jì),讓功率達(dá)到儀器功率精確度規(guī)格的 +14.78 dBm (或近似值) 之內(nèi)。
3) 附加 70 dB 固定式衰減器(30 dB + 20 dB + 20 dB) 與任何必要的連接線
4) 以高精確度的功率計(jì)量測(cè) RF 功率
將功率計(jì)設(shè)定為最大平均值 (512),以量測(cè) RF 功率強(qiáng)度。此處的讀數(shù)為 -56.63 dBm。
5) 計(jì)算 RF 總耗損
若以 +14.78 dBm 減去 -56.63 dBm,即可在整合了衰減器與連接線之后,確保產(chǎn)生 71.41 dB 的功率耗損。請(qǐng)注意,多款衰減器往往具備最高 ± 1.0 dB 的不確定性。因此量測(cè)所得的衰減可能最高達(dá) ± 3.0 dB 的變化。所以校準(zhǔn)衰減器更顯重要,確保已知衰減可達(dá)較低的不確定性。
根據(jù)衰減器與連接線的校準(zhǔn)例程,即可確定所需的 RF 功率強(qiáng)度必須達(dá)到 -136 dBM?;谇笆龅?71.41 dB 衰減,必須將 RF 向量訊號(hào)產(chǎn)生器設(shè)定為 -58.59 dBm 的功率強(qiáng)度。若要確認(rèn)程序設(shè)計(jì)過后的功率無(wú)誤,則可依下列步驟進(jìn)行:
6) 直接將功率計(jì)附加至 RF 向量訊號(hào)產(chǎn)生器
并移除所有的衰減器與連接線。
7) 將 RF 產(chǎn)生器設(shè)定必要數(shù)值,使其最后功率達(dá)到-136 dBm。
而程序設(shè)計(jì)的數(shù)值應(yīng)為 -58.59 dBm,即由 -136 dBm + 71.41 dB 而得。
8) 以功率計(jì)量測(cè)最后功率。
請(qǐng)注意,所測(cè)得的 RF 功率,將因儀器的功率精確度而有所不同。即使測(cè)得 -58.59,則實(shí)際結(jié)果亦將因儀器的不確定性而產(chǎn)生些許變化。
9) 調(diào)整產(chǎn)生器功率直到功率計(jì)讀出-58.59 dBm
雖然 RF 產(chǎn)生器可于一定的容錯(cuò)范圍內(nèi)進(jìn)行作業(yè),但此數(shù)值不僅具有可重復(fù)性,亦可調(diào)整 RF 功率計(jì)進(jìn)行校準(zhǔn),直到得出合適的數(shù)值為止。
透過上述方法,僅需 3 項(xiàng) RF 功率量測(cè)作業(yè),即可決定所需的 RF 功率。因此,假設(shè)量測(cè)裝置具有 ± 0.2 dB 的不確定性,則可得出 – 136 dBm 的功率不確定性將為 ± 0.6 dBm (3 x 0.2)。
Part B:敏感度量測(cè)
現(xiàn)在校準(zhǔn) RF 量測(cè)系統(tǒng)的功率之后,接著僅需進(jìn)行 RF 產(chǎn)生器的程序設(shè)計(jì),將功率強(qiáng)度設(shè)定足以讓接收器回傳最小的 C/N。雖然用于量測(cè)敏感度的 RF 功率將因接收器而有所不同,但是接收器 C/N 與 RF 功率的比值,將呈現(xiàn)完美的線性關(guān)系。在我們的測(cè)試中,可假設(shè)所需的 C/N 為 28 dB-Hz 以進(jìn)行定位。透過等式 12,即可得出接收器 C/N 比值與噪聲指數(shù)之間的關(guān)系。
等式 14. C/N 做為噪聲指數(shù)與衛(wèi)星功率的函式
假設(shè)衛(wèi)星功率穩(wěn)定,則可發(fā)現(xiàn)由接收器回報(bào)的 C/N 比,幾乎就等于接收器的噪聲指數(shù)函式。下表顯示可達(dá)到的多樣 C/N 比值。
表6. C/N 為噪聲指數(shù)的函式
一般來說,接收器上的 GPS 譯碼芯片組,將得出定位作業(yè)所需的最小 C/N 比值。然而,又必須透過整組接收器的噪聲指數(shù),才能決定目前功率強(qiáng)度所能達(dá)到的 C/N 比值。因此,當(dāng)量測(cè)敏感度時(shí),必須先了解定位作業(yè)所需的最小 C/N 比值。
其實(shí)有多種方法可量測(cè)敏感度。如上表所示,RF 功率與敏感度具有直接相關(guān)性。因此,可根據(jù)現(xiàn)有的敏感度功率強(qiáng)度,量測(cè)接收器的 C/N 比值;亦可根據(jù)不同的 RF 功率強(qiáng)度,得出系統(tǒng)敏感度。
為了說明這點(diǎn),則可注意 RF 訊號(hào)功率與 GPS 接收器 C/N 比值,在不同功率強(qiáng)度之下的關(guān)系。下方量測(cè)作業(yè)所套用的激發(fā),即忽略了第一組 LNA 而進(jìn)行,且接收器的整體噪聲指數(shù)約為 8 dB。而表7 顯示相關(guān)結(jié)果。
表7. 接收器的 C/N 比值為 RF 功率的函式
如表7 所示,此量測(cè)范例的 RF 功率與 C/N 比值,幾乎是呈現(xiàn)完整的線性關(guān)系。而若使用高輸入功率模擬 C/N 比值,將產(chǎn)生例外情況;接收器報(bào)表將出現(xiàn)可能的最大 C/N 值。然而,因?yàn)樵谌魏螚l件下,進(jìn)行實(shí)驗(yàn)的芯片組均不會(huì)產(chǎn)生超過 54 dB-Hz 的 C/N 值,所以這些結(jié)果均屬預(yù)期范圍之中。
根據(jù)表6中所示 RF 功率與敏感度之間的線性關(guān)系,其實(shí)僅需針對(duì)接收器模擬不同的功率強(qiáng)度,即可進(jìn)行 GPS 接收器的生產(chǎn)測(cè)試作業(yè)。若接收器在 -142 dBm 得出 28 dB-Hz 的C/N 值,則亦可于 -136 dBm 得到 34 dB-Hz 的 C/N 值。若特別注重量測(cè)速度,則可使用較高的 C/N 值,再?gòu)慕Y(jié)果中推斷出敏感度的信息。
找出噪聲指數(shù)
又根據(jù)等式 13 與 14,搭配相關(guān)載噪比 (Carrier-to-noise ratio),則可得出接收器或芯片組的噪聲指數(shù)。亦如下方等式 15 所示。
等式 15. 接收器噪聲指數(shù)為功率與 C/N 比值所構(gòu)成的函式。
而由表7 所示,接收器的噪聲指數(shù)將直接與 RF 功率強(qiáng)度與載噪比互成比例。根據(jù)此關(guān)系,我們僅需針對(duì) RF 功率強(qiáng)度與 C/N 進(jìn)行關(guān)聯(lián)性,即可量測(cè)芯片組的噪聲指數(shù)。而此項(xiàng)量測(cè)中請(qǐng)注意,應(yīng)以 0.1 dB 為單位增加產(chǎn)生器的功率。由于 NMEA-183 協(xié)議所得到的衛(wèi)星 C/N 值,是以最接近的小數(shù)字為準(zhǔn),因此在量測(cè)接收器 C/N 比值時(shí),應(yīng)估算噪聲指數(shù)達(dá) 1 位數(shù)的精確度。范例結(jié)果如圖 18 所示。
表8. DUT 功率與接收器 C/N 的關(guān)聯(lián)。
如表8 所示,若 RF 功率強(qiáng)度處于 -136.6 dBm ~ -135.7 dBm 之間,則其 C/N 比值將維持于 30 dB-Hz。若以舍入法計(jì)算 NMEA-183 的數(shù)據(jù)時(shí),則幾乎可確定 -136.1 dBm 功率強(qiáng)度將產(chǎn)生 30.0 dB-Hz 的 C/N 比值無(wú)誤。透過等式 14,芯片組的噪聲指數(shù)則為 -174.0 dBm + -136.1 dBm + 30.0 dB-Hz = 7.9 dB。請(qǐng)注意,此計(jì)算是根據(jù) 2 組不確定性系數(shù)而進(jìn)行:向量訊號(hào)產(chǎn)生器的功率不確定性,還有接收器所產(chǎn)生的 C/N 不確定性。
多組衛(wèi)星的 GPS 接收器量測(cè)
敏感度量測(cè)需要單一衛(wèi)星激發(fā),而有多項(xiàng)接收器量測(cè)需要可仿真多組衛(wèi)星的單一測(cè)試激發(fā)。更進(jìn)一步來說,如首次定位時(shí)間 (TTFF)、定位精確度,與精確度降低 (Dilution of precision) 的量測(cè)作業(yè),均需要接收器進(jìn)行定位。由于接收器需要至少 4 組衛(wèi)星進(jìn)行 3D 定位作業(yè),因此這些量測(cè)將較敏感度量測(cè)來得耗時(shí)。也因此,多項(xiàng)定位量測(cè)作業(yè)均于檢驗(yàn)與校準(zhǔn)作業(yè)中進(jìn)行,而非生產(chǎn)測(cè)試時(shí)才執(zhí)行。
此章節(jié)將說明可為接收器提供多組衛(wèi)星訊號(hào)的方法。在討論 GPS 仿真作業(yè)時(shí),亦將讓使用者了解 TTFF 與定位精確度量測(cè)的執(zhí)行方法。若是討論 RF 記錄與播放作業(yè),將一并說明應(yīng)如何在多項(xiàng)環(huán)境條件下,校準(zhǔn)接收器的效能。
量測(cè)首次定位時(shí)間 (TTFF) 與定位精確度
首次定位時(shí)間 (TTFF) 與定位精確度量測(cè),為設(shè)計(jì) GPS 接收器的首要檢驗(yàn)作業(yè)。若您已將多種消費(fèi)性的 GPS 應(yīng)用了然于胸,即應(yīng)知道接收器回傳其實(shí)際位置所需的時(shí)間,將大幅影響接收器的用途。此外,接收器回報(bào)其位置的精確度亦甚為重要。
為了讓接收器可進(jìn)行定位,則應(yīng)透過導(dǎo)航訊息 (Navigation message) 下載星歷與年歷信息。由于接收器下載完整 GPS 框架必須耗費(fèi) 30 秒,因此「冷啟動(dòng) (Cold start)」的TTFF 狀態(tài)則需要 30 ~ 60 秒。事實(shí)上,多款接收器可指定數(shù)種 TTFF 狀態(tài)。最常見的為:
冷啟動(dòng) (Cold Start):接收器必須下載年歷與星歷信息,才能進(jìn)行定位。由于必須從各組衛(wèi)星下載至少 1 組 GPS 框架 (Frame),因此大多數(shù)的接收器在冷啟動(dòng)狀態(tài)下,將于30 ~ 60 秒時(shí)進(jìn)行定位。
熱啟動(dòng) (Warm Start):接收器的年歷信息尚未超過 1 個(gè)星期,且不需要其他星歷信息。一般來說,此接收器可于 20 秒內(nèi)得知目前時(shí)間,并可進(jìn)行 100 公里內(nèi)的定位 [2]。大多數(shù)熱啟動(dòng)狀態(tài)的 GPS 接收器,可于 60 秒內(nèi)進(jìn)行定位,有時(shí)甚至僅需更短的時(shí)間。
熱開機(jī) (Hot Start):接收器具備最新的年歷與星歷信息時(shí),即為熱開機(jī)狀態(tài)。接收器僅需取得各組衛(wèi)星的時(shí)序信息,即可開始回傳定位位置。大多數(shù)熱開機(jī)狀態(tài)的 GPS 接收器,僅需 0.5 ~ 20 秒即可開始定位作業(yè)。
在大部分的情況下,TTFF 與定位精確度均與特定功率強(qiáng)度相關(guān)。值得注意的是,若能于多種情況下檢驗(yàn)此 2 種規(guī)格的精確度,其實(shí)極具有其信息價(jià)值。因?yàn)?GPS 衛(wèi)星每 12個(gè)小時(shí)即繞行地球 1 圈,所以可用范圍內(nèi)的衛(wèi)星訊號(hào)隨時(shí)都在變化,也讓接收器可在不同的狀態(tài)下回傳正確結(jié)果。
下列章節(jié)將說明應(yīng)如何使用 2 筆數(shù)據(jù)源,以執(zhí)行 TTFF 與定位精確度的量測(cè),包含:
1) 接收器在其布署環(huán)境中,透過天線所獲得的實(shí)時(shí)數(shù)據(jù)
2) 透過空中傳遞所記錄的 RF 訊號(hào),并將之用以測(cè)試接收器所記錄的數(shù)據(jù)
3) 當(dāng)記錄實(shí)時(shí)數(shù)據(jù)后,RF 產(chǎn)生器用于模擬星期時(shí)間 (Time-of-week,TOW) 所得的仿真數(shù)據(jù)用此 3 筆不同的數(shù)據(jù)源測(cè)試接收器,可讓各個(gè)數(shù)據(jù)源的量測(cè)作業(yè)均具備可重復(fù)特性,且均相互具備相關(guān)性。
量測(cè)設(shè)定
若要獲得最佳結(jié)果,則所選擇的記錄位置,應(yīng)讓衛(wèi)星不致受到周遭建筑物的阻礙。我們選擇 6 層樓停車場(chǎng)的頂樓進(jìn)行測(cè)試,以無(wú)建物覆蓋的屋頂盡可能接觸多組衛(wèi)星訊號(hào)。透過GPS 芯片組的多個(gè)開機(jī)模式,均可執(zhí)行 TTFF 量測(cè)作業(yè)。以 SIRFstarIII 芯片組為例,即可重設(shè)接收器的出廠、冷啟動(dòng)、熱啟動(dòng),與熱開機(jī)模式。下方所示即為接收器執(zhí)行相關(guān)測(cè)試的結(jié)果。
若要量測(cè)水平定位的精確度,則必須根據(jù)經(jīng)、緯度信息進(jìn)而了解相關(guān)錯(cuò)誤。由于這些指數(shù)均以「度」表示,因此可透過下列等式轉(zhuǎn)換之:
等式 16. 計(jì)算 GPS 的定位錯(cuò)誤
請(qǐng)注意該等式中的 111,325 公尺 (111.325 公里),即等于地球圓周的 1 度 (共 360 度)。此指數(shù)是根據(jù)地球圓周 360 x 111.325 km = 40.077 km 而來。
Off-the-Air GPS
請(qǐng)注意該等式中的 111,325 公尺 (111.325 公里),即等于地球圓周的 1 度 (共 360 度)。此指數(shù)是根據(jù)地球圓周 360 x 111.325 km = 40.077 km 而來。
表9.「Off-the-air」GPS 訊號(hào)的 TTFF 與最大 C/N 比值
根據(jù)初始的 「Off-the-air」結(jié)果,則可發(fā)現(xiàn) GPS 接收器在標(biāo)準(zhǔn)的 3 秒誤差內(nèi),可達(dá)到 33.2 秒的 TTFF。這些量測(cè)結(jié)果均位于 TTFF 規(guī)格的容錯(cuò)范圍內(nèi)。而更重要的,即是可透過仿真與記錄的 GPS 數(shù)據(jù),進(jìn)而比較量測(cè)結(jié)果與實(shí)際結(jié)果。
根據(jù)上列線性誤差等式,即可計(jì)算各次量測(cè)的線性標(biāo)準(zhǔn)誤差
表10. 由「Off-the-air」GPS 訊號(hào)所得的 LLA
請(qǐng)注意,若要將「Off-the-air」GPS 訊號(hào)、仿真訊號(hào),與播放訊號(hào)進(jìn)行相關(guān),則必須先進(jìn)行「Off-the-air」訊號(hào)功率的相關(guān)性。當(dāng)進(jìn)行 TTFF 與定位精確度量測(cè)時(shí),RF 功率強(qiáng)度基本上不太會(huì)影響到結(jié)果。因此,必須比對(duì)「Off-the-air」、仿真,與記錄 GPS 訊號(hào)的 C/N 比值,即可進(jìn)行 RF 功率的相關(guān)性作業(yè)。
已記錄的 GPS 訊號(hào)
雖然可透過實(shí)時(shí)訊號(hào)量測(cè) TTFF 與定位誤差,但是這些量測(cè)作業(yè)往往不可重復(fù);如同衛(wèi)星均持續(xù)環(huán)繞地球運(yùn)行,而非固定不動(dòng)。進(jìn)行可重復(fù) TTFF 與定位精確度的量測(cè)方式之一,即是使用已記錄的 GPS 訊號(hào)。此章節(jié)將接著說明應(yīng)如何透過已記錄的 GPS 訊號(hào),以進(jìn)行實(shí)時(shí) GPS 訊號(hào)的相關(guān)作業(yè)。
已記錄的 GPS 訊號(hào),可透過 RF 向量訊號(hào)產(chǎn)生器再次產(chǎn)生。由于必須播放訊號(hào),則校準(zhǔn) RF 功率強(qiáng)度最簡(jiǎn)單的方法,即是比對(duì)實(shí)時(shí)與記錄的 C/N 值。當(dāng)獲得「Off-the-air」訊號(hào)時(shí),則可發(fā)現(xiàn)所有實(shí)時(shí)訊號(hào)的 C/N 峰值均約為 47 ~ 49 dB-Hz 之間。
而播放訊號(hào)的功率強(qiáng)度,亦可達(dá)到與實(shí)時(shí)訊號(hào)相同的 C/N 值,進(jìn)而確定其所得的 TTFF 與位置精確度,將可與實(shí)時(shí)訊號(hào)產(chǎn)生相關(guān)。在下圖 21 中,我們使用的星期時(shí)間 (TOW)值與實(shí)時(shí)「Off-the-air」訊號(hào)的 TOW 相近,而在 4 次不同的實(shí)驗(yàn)下得到 TTFF 結(jié)果。
表11. 由「Off-the-air」GPS 訊號(hào)所得的 TTFF
除了量測(cè)首次定位時(shí)間之外,亦可量測(cè) GPS 接收器所取得的經(jīng)度、緯度,與高度信息。下圖顯示相關(guān)結(jié)果。
表12. 由「Off-the-air」GPS 訊號(hào)所得的 LLA
從表11與12 中可注意到,其實(shí)透過已記錄的 GPS 訊號(hào),即可得到合理的可重復(fù) TTFF 與 LLA (Latitude、Longitude、Altitude) 結(jié)果。然而,由于這些量測(cè)作業(yè)的錯(cuò)誤與標(biāo)準(zhǔn)誤差,僅稍微高于「Off-the-air」量測(cè)的誤差,因此幾乎可將之忽略。因?yàn)榻^對(duì)精確度 (Absolute accuracy) 較高,所以可重復(fù)性亦較優(yōu)于「Off-the-air」量測(cè)作業(yè)。
仿真的 GPS 訊號(hào)
最后 1 種可進(jìn)行 TTFF 與定位精確度量測(cè)的 GPS 測(cè)試訊號(hào)來源,即為仿真的多組衛(wèi)星 GPS 訊號(hào)。透過 NI LabVIEW GPS 工具組,即可透過由使用者定義的 TOW、星期數(shù),與接收器位置,仿真最多 12 組衛(wèi)星。此 GPS 訊號(hào)仿真方式的主要優(yōu)點(diǎn),即是透過可能的最佳訊噪比 (SNR) 構(gòu)成 GPS 訊號(hào)。與實(shí)時(shí)/記錄的 GPS 訊號(hào)不同,依此種方法所建立的可重復(fù)訊號(hào),其噪聲功率甚小。圖 23 即呈現(xiàn)了仿真多組衛(wèi)星訊號(hào)的頻域。
VSA 設(shè)定
Center: 1.57542 GHZz
Span: 4 MHz
RBW: 100 Hz
Averaging: RMS, 20 Average
圖 11. 仿真多組衛(wèi)星 GPS 訊號(hào)的帶內(nèi)功率 (Power-in-band) 量測(cè)作業(yè)
當(dāng)透過仿真的多組衛(wèi)星波形測(cè)試接收器時(shí),則可針對(duì)接收器所提供的 C/N 比值進(jìn)行關(guān)聯(lián),以再次評(píng)估所需的 RF 功率。
一旦能為 RF 功率強(qiáng)度進(jìn)行關(guān)聯(lián),則可接著量測(cè) TTFF。當(dāng)量測(cè) TTFF 時(shí),應(yīng)先啟動(dòng) RF 向量訊號(hào)產(chǎn)生器。過了 5 秒鐘之后,可手動(dòng)將接收器轉(zhuǎn)為「冷」開機(jī)模式。一旦接收器取得定位信息,則將回報(bào) TTFF 信息。下圖則呈現(xiàn)仿真 GPS 訊號(hào)的相關(guān)結(jié)果:
表13. TTFF 數(shù)值的 4 項(xiàng)專屬模擬
請(qǐng)注意表13中的所有仿真作業(yè)均使用相同的 LLA (Latitudes、Longitude,與 Altitude)。
此外,若要量測(cè) TTFF,我們亦可依不同的 TOW 建立仿真作業(yè),以計(jì)算 LLA 的精確度與可重復(fù)性。請(qǐng)注意,由于在數(shù)個(gè)小時(shí)之內(nèi),可用的衛(wèi)星訊號(hào)將持續(xù)變化,因此必須設(shè)定多種 TOW 以測(cè)試精確度 (如表13)。而表14 則表示其 LLA 信息。
表14. 多項(xiàng) TOW 仿真作業(yè)的水平精確度
在表14 中,可根據(jù)模擬的定位,計(jì)算出公尺為單位的水平錯(cuò)誤。又如圖 20 所示,可透過下列等式找出錯(cuò)誤:
等式 17. 仿真 GPS 訊號(hào)的定位錯(cuò)誤
而針對(duì)我們所使用的接收器而言,其水平定位最大誤差為 5.2 公尺,水平定位平均誤差為 1.5 公尺。而透過表8 所示,我們所使用的接收器均可達(dá)指定的限制之內(nèi)。
如先前所述,接收器的精確度,與可用的衛(wèi)星訊號(hào)密不可分。也就是說,接收器的精確度可能在數(shù)個(gè)小時(shí)內(nèi)大幅變化 (衛(wèi)星訊號(hào)改變),但是其可重復(fù)性卻極小。為了確認(rèn)我們的GPS 接收器亦為如此,則可針對(duì)特定的模擬 GPS 波形執(zhí)行多項(xiàng)測(cè)試。此項(xiàng)作業(yè)主要是必須確認(rèn),RF 儀控并不會(huì)對(duì)仿真的 GPS 訊號(hào)產(chǎn)生額外的不確定性。如下方圖 26 所示,當(dāng)重復(fù)使用相同的二進(jìn)制檔案時(shí),我們所使用的 GPS 接收器將得到極高可重復(fù)性的量測(cè)。
表15. 相同波形的各次測(cè)試,其誤差亦具有極高的可重復(fù)性
回頭再看表10,使用仿真 GPS 訊號(hào)的最大優(yōu)點(diǎn)之一,即是可達(dá)到可重復(fù)的定位結(jié)果。由于此特性可讓我們確認(rèn):所回報(bào)的定位信息,并不會(huì)因?yàn)樵O(shè)計(jì)迭代 (Iteration) 而發(fā)生變化,因此在開發(fā)的設(shè)計(jì)檢驗(yàn)階段中,此特性格外重要。
量測(cè)動(dòng)態(tài)定位精確度
GPS 接收器測(cè)試的最后 1 種方法,即是量測(cè)接收器的追蹤功能,使其在大范圍的功率強(qiáng)度與速度中維持定位。在過去,此種測(cè)試 (往往亦為功能測(cè)試) 的常見方法之一,即是整合驅(qū)動(dòng)測(cè)試與多路徑衰減 (Multi-path fading) 模擬。在驅(qū)動(dòng)測(cè)試 (Drive test) 中,我們使用可導(dǎo)入大量訊號(hào)減損 (Impairment) 的已知路徑,驅(qū)動(dòng)原型接收器。由于驅(qū)動(dòng)測(cè)試是將自然減損套用至 GPS 衛(wèi)星訊號(hào)的簡(jiǎn)單方法,因此這些量測(cè)往往亦不可重復(fù)。事實(shí)上,如GPS 衛(wèi)星移動(dòng)、天氣條件的變化,甚至年度時(shí)間 (Time of year) 的因素,均可影響接收器的效能。
因此,目前有 1 種逐漸普及的方法,即是于驅(qū)動(dòng)測(cè)試上記錄 GPS 訊號(hào),以大量訊號(hào)減損檢驗(yàn)接收器效能。若要進(jìn)一步了解設(shè)定 GPS 記錄系統(tǒng)的方法,請(qǐng)參閱前述章節(jié)。而在驅(qū)動(dòng)測(cè)試方案中,有多款 PXI 機(jī)箱可供選擇。最簡(jiǎn)單的方式,即是使用 DC 機(jī)箱并以汽車電池進(jìn)行供電。其次可使用標(biāo)準(zhǔn)的 AC 機(jī)箱,搭配轉(zhuǎn)換器即可使用汽車電池供電。在此 2種選項(xiàng)中,DC 機(jī)箱的耗電量較低,但亦較難以于實(shí)驗(yàn)室中供電。如下列所示的標(biāo)準(zhǔn) AC 機(jī)箱使用結(jié)果,其所供電的系統(tǒng)則包含 1 組外接的車用電池,與 1 組 DC to AC 轉(zhuǎn)換器。
一旦我們完成 GPS 訊號(hào)的記錄作業(yè),即可透過相同的測(cè)試數(shù)據(jù)重復(fù)測(cè)試接收器。在下方的說明中,我們追蹤接收器的經(jīng)度、緯度,與速度。透過串行端口與每秒 1 次的 NMEA-183 指令讀取速率,從接收器讀取所需的數(shù)據(jù)。在下方量測(cè)中,我們所呈現(xiàn)的接收器特性參數(shù),僅有定位與衛(wèi)星 C/N 值。請(qǐng)注意,在執(zhí)行這些量測(cè)作業(yè)的同時(shí),亦可分析其他信息。雖然下列結(jié)果中并未量測(cè)水平精確度衰減 (Horizontal dilution of precision,HDOP),但此特性參數(shù)亦可提供大量的接收器定位精確度信息。
若要獲得最佳結(jié)果,則應(yīng)確實(shí)同步化接收器與 RF 產(chǎn)生作業(yè)的指令接口。下方所示結(jié)果中,我們將 COM 埠 (pin 2) 的數(shù)據(jù)信道做為開始觸發(fā)器,以針對(duì)RF 向量訊號(hào)產(chǎn)生器與GPS 模塊進(jìn)行同步化。此同步化方式僅需任意波形產(chǎn)生器的 1 個(gè)頻率循環(huán) (100 MS/s),即可進(jìn)行向量訊號(hào)產(chǎn)生器與 GPS 接收器的同步化。因此最大的歪曲 (Skew) 應(yīng)為 10µS。并請(qǐng)注意,因?yàn)槲覀儗⑷〉媒邮掌鞯慕?jīng)緯度,所以由同步化作業(yè)所造成的精確度錯(cuò)誤,將為 10µs 乘以 Max Velocity (m/s),或?yàn)?0.15 mm。
使用上述的設(shè)定,我們即可按時(shí)取得接收器的經(jīng)緯度。結(jié)果即如下圖所示:
圖12. 每 4 分鐘所得到的接收器經(jīng)緯度
在圖12所呈現(xiàn)的數(shù)據(jù)中,即使用已記錄的驅(qū)動(dòng)測(cè)試訊號(hào),取得統(tǒng)計(jì)、定位,與速度的相關(guān)信息。此外我們可觀察到,在每次的測(cè)試之間,此項(xiàng)信息具有相對(duì)的可重復(fù)性;即為每個(gè)獨(dú)立軌跡所呈現(xiàn)的差異。事實(shí)上,這就是我們最需要的接收器可重復(fù)性 (Repeatability)。由于可重復(fù)性信息將可預(yù)估 GPS 接收器精確度的變化情形,因此我們亦可計(jì)算波形各個(gè)樣本之間的標(biāo)準(zhǔn)誤差。在圖 29 中,我們?cè)诟鞔瓮交幼鳂I(yè)之間,繪出標(biāo)準(zhǔn)的定位誤差 (相對(duì)于平均位置)。
圖 13. 依時(shí)間取得的經(jīng)度與緯度標(biāo)準(zhǔn)誤差
當(dāng)看到水平標(biāo)準(zhǔn)誤差時(shí),可注意到標(biāo)準(zhǔn)誤差在 120 秒時(shí)快速增加。為了進(jìn)一步了解此現(xiàn)象,我們亦根據(jù)接收器的速度 (m/s) 與 C/N 值的 Proxy,繪出總水平標(biāo)準(zhǔn)誤差。而我們預(yù)先假設(shè):在沒有高功率衛(wèi)星的條件下,衛(wèi)星的 C/N 比值僅將影響接收器。因此,我們針對(duì)接收器所回傳 4 組最高高度的衛(wèi)星,平均其 C/N 比值而繪出另 1 組 C/N 的Proxy。結(jié)果即如下列圖 14所示。
圖14. 定位精確度與 C/N 值的相關(guān)性
如圖14所示,在 120 秒時(shí)所發(fā)生的峰值水平錯(cuò)誤 (標(biāo)準(zhǔn)誤差中),即與衛(wèi)星的 C/N 值產(chǎn)生直接關(guān)聯(lián),而與接收器的速度無(wú)關(guān)。此次取樣的標(biāo)準(zhǔn)誤差約為 2 公尺,且已低于其他取樣約 10 公尺的誤差。同時(shí),我們可發(fā)現(xiàn)前 4 名的 C/N 平均值,由將近 45 dB-Hz 驟降至 41 dB-Hz。
上述的測(cè)試不僅說明 C/N 比值對(duì)定位精確度的影響,亦說明了已記錄 GPS 數(shù)據(jù)所能進(jìn)行的分析作業(yè)種類。在此測(cè)試中的 GPS 訊號(hào)驅(qū)動(dòng)記錄作業(yè),是在中國(guó)深圳 (Shenzhen) 北方的惠州市 (Huizhou) 所進(jìn)行。并接著于德州奧斯汀 (Austin Texas) 測(cè)試實(shí)際的接收器。
結(jié)論
如整篇文件所看到的,目前已有多項(xiàng)技術(shù)可測(cè)試 GPS 接收器。雖然如敏感度的基本量測(cè),最常用于生產(chǎn)測(cè)試中,但是此量測(cè)技術(shù)亦可用于檢驗(yàn)接收器的效能。這些測(cè)試技術(shù)雖然各有變化,但是均可于單一 PXI 系統(tǒng)中全數(shù)完成。事實(shí)上,GPS 接收器均可透過仿真或記錄的基頻 (Baseband) 波形進(jìn)行測(cè)試。透過整合的方式,工程師可執(zhí)行完整的 GPS 接收器功能測(cè)試:從敏感度到追蹤其可重復(fù)性。
倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...
關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...
關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)