基于云霧計(jì)算的物聯(lián)網(wǎng)關(guān)鍵技術(shù)解析
掃描二維碼
隨時(shí)隨地手機(jī)看文章
0? 引言
近年來(lái),物聯(lián)網(wǎng)越來(lái)越廣泛應(yīng)用于人們的生活中,并逐漸從簡(jiǎn)單的物與物連接向智能化方向轉(zhuǎn)型。物聯(lián)網(wǎng)要獲得更大的成功,必須要憑借一個(gè)開放的并能夠很好提供支持的平臺(tái)。云計(jì)算憑借其強(qiáng)大的計(jì)算存儲(chǔ)能力,成為大數(shù)據(jù)分析處理的支撐平臺(tái)。通過(guò)將復(fù)雜的應(yīng)用卸載到云中存儲(chǔ)和處理,再將處理結(jié)果從云端發(fā)送到移動(dòng)用戶,解決了用戶終端設(shè)備存儲(chǔ)空間不足或處理速度不夠快等問(wèn)題。但目前物聯(lián)網(wǎng)終端設(shè)備數(shù)量的爆發(fā)式增長(zhǎng),物聯(lián)網(wǎng)感知獲取的原始數(shù)據(jù)量非常龐大,且海量的數(shù)據(jù)之間存在繁雜的關(guān)系,對(duì)海量數(shù)據(jù)進(jìn)行過(guò)濾、處理、分析等對(duì)云計(jì)算框架是一個(gè)巨大的挑戰(zhàn)。
云計(jì)算是聚合度很高的計(jì)算服務(wù),其使用方式雖然廉價(jià)、簡(jiǎn)單且方便,但云服務(wù)器遠(yuǎn)離移動(dòng)設(shè)備,數(shù)據(jù)傳輸?shù)木嚯x大,導(dǎo)致延遲和通信開銷增大甚至不可容忍。物聯(lián)網(wǎng)終端設(shè)備和用戶終端設(shè)備基本都是能量受限的,將數(shù)據(jù)傳到遠(yuǎn)程云中心執(zhí)行,會(huì)導(dǎo)致物聯(lián)網(wǎng)終端能耗過(guò)大而過(guò)早失效,或用戶終端設(shè)備待機(jī)時(shí)間大大減小。同時(shí),使用云服務(wù)時(shí)需要大量數(shù)據(jù)的發(fā)送和接收,因而需要消耗大量的網(wǎng)絡(luò)帶寬,可能造成數(shù)據(jù)中心和終端之間的I/O(輸入輸出)瓶頸,由此引發(fā)傳輸速率大大下降,甚至服務(wù)中斷等問(wèn)題,云服務(wù)的優(yōu)勢(shì)可能也會(huì)被這些問(wèn)題抵消掉。
為了解決上述問(wèn)題,本文將云計(jì)算網(wǎng)絡(luò)架構(gòu)擴(kuò)展到網(wǎng)絡(luò)邊緣,提出了霧計(jì)算的概念。霧計(jì)算更加強(qiáng)調(diào)邊緣設(shè)備的作用,其核心思想是“智能前端化”,即在云層和終端設(shè)備層之間加上一層,叫做霧層。通過(guò)霧層提供的計(jì)算、存儲(chǔ)和網(wǎng)絡(luò)通信服務(wù),使得數(shù)據(jù)的計(jì)算、分析和處理更加接近用戶,從而降低了物聯(lián)網(wǎng)業(yè)務(wù)通過(guò)云層處理的響應(yīng)時(shí)延和存儲(chǔ)開銷,降低了對(duì)無(wú)線資源的消耗,降低了終端設(shè)備的能耗從而延長(zhǎng)了其待機(jī)時(shí)間,甚至能夠在沒(méi)有因特網(wǎng)覆蓋的區(qū)域繼續(xù)提供計(jì)算服務(wù)。
1? 霧計(jì)算與云計(jì)算
云計(jì)算將應(yīng)用的執(zhí)行化繁為簡(jiǎn),但位于遠(yuǎn)端的云對(duì)那些延遲敏感的業(yè)務(wù)不能很好地支持,對(duì)移動(dòng)性、不同地理分布不能很好地支持,且遠(yuǎn)端執(zhí)行往往導(dǎo)致用戶終端能耗過(guò)大,進(jìn)而降低了其待機(jī)時(shí)間。因而需要一個(gè)更接近“地面”用戶的計(jì)算平臺(tái)來(lái)作為對(duì)云計(jì)算的有效補(bǔ)充,稱之為霧計(jì)算平臺(tái),區(qū)別于那些位于遠(yuǎn)端“天邊”的集中式云計(jì)算平臺(tái)。霧計(jì)算將計(jì)算范式從網(wǎng)絡(luò)中心擴(kuò)展至網(wǎng)絡(luò)邊緣,從而可以更加廣泛地運(yùn)用于更多種類的應(yīng)用和業(yè)務(wù)。就其位置而言,霧計(jì)算是分布式的云計(jì)算服務(wù)器,故霧計(jì)算也稱為移動(dòng)邊緣計(jì)算(Edge?Computing),因?yàn)殪F節(jié)點(diǎn)就是互聯(lián)網(wǎng)與現(xiàn)實(shí)終端的邊界。
霧計(jì)算主要具有以下特點(diǎn)。
a) 支持實(shí)時(shí)互動(dòng),更低時(shí)延和能耗。
b) 更低的帶寬需求,緩解海量設(shè)備連接云端時(shí)引起的擁塞。
c) 數(shù)據(jù)的分布式處理,降低海量數(shù)據(jù)存儲(chǔ)需求。
d) 設(shè)備位置精確感知,支持更大范圍的移動(dòng)性。
e) 支持異構(gòu)性,支持多樣化的異構(gòu)軟硬件設(shè)備。
根據(jù)霧計(jì)算智能前端化思想,本文提出了如圖1所示的霧計(jì)算框架,在云服務(wù)器和終端設(shè)備之間擴(kuò)展一個(gè)更靠近移動(dòng)用戶的霧層。霧層由部署在現(xiàn)場(chǎng)的處于網(wǎng)絡(luò)最邊緣的霧服務(wù)器組成。
圖1 霧計(jì)算架構(gòu)圖
在提出的霧計(jì)算框架中,通過(guò)在云服務(wù)器和終端設(shè)備之間擴(kuò)展具有計(jì)算、存儲(chǔ)能力的霧層,將云服務(wù)器上本地化需求的關(guān)鍵數(shù)據(jù)和計(jì)算服務(wù)移到更靠近終端設(shè)備的霧服務(wù)器上,通過(guò)提供數(shù)據(jù)緩存、本地化計(jì)算等功能,更好地滿足了移動(dòng)應(yīng)用高流量和低延遲的需求。
霧計(jì)算與云計(jì)算的區(qū)別如表1所示。
表1 云計(jì)算與霧計(jì)算的對(duì)比
值得注意的是,霧計(jì)算和云計(jì)算并不是你死我活的競(jìng)爭(zhēng)關(guān)系,未來(lái)計(jì)算范式中并不是霧計(jì)算要蠶食云計(jì)算。霧計(jì)算的提出是作為云計(jì)算的有效補(bǔ)充,通過(guò)二者卓有成效的相互配合,使得更多不同種類的應(yīng)用和業(yè)務(wù)能夠更好地加入到網(wǎng)絡(luò)計(jì)算之中。
2? 基于云霧計(jì)算的物聯(lián)網(wǎng)架構(gòu)
根據(jù)霧計(jì)算更靠近終端用戶的思路,通過(guò)給蜂窩網(wǎng)絡(luò)中的每個(gè)接入點(diǎn)配備霧計(jì)算設(shè)備,可以把大量與特定環(huán)境相關(guān)的信息直接在本地接入點(diǎn)進(jìn)行存儲(chǔ)和處理。圖2所示為基于霧計(jì)算的物聯(lián)網(wǎng)框架,上層為云計(jì)算中心,下層為傳感器和移動(dòng)終端層,在云層和終端設(shè)備層之間擴(kuò)展一個(gè)更靠近終端設(shè)備和移動(dòng)用戶的霧計(jì)算層,成為霧層。霧層部署在物聯(lián)網(wǎng)接入層,由大量具有計(jì)算、存儲(chǔ)功能的霧服務(wù)器組成。
霧接入點(diǎn)同時(shí)作為物聯(lián)網(wǎng)接入點(diǎn),首先把傳感器采集的數(shù)據(jù)進(jìn)行過(guò)濾、分析,進(jìn)行任務(wù)的分解,哪些業(yè)務(wù)可以在本節(jié)點(diǎn)進(jìn)行處理,哪些業(yè)務(wù)需要分發(fā)給其他霧接入點(diǎn)協(xié)作處理,哪些業(yè)務(wù)需要回傳至云計(jì)算中心進(jìn)行處理。另外霧接入點(diǎn)也可以作為云端數(shù)據(jù)和終端數(shù)據(jù)的緩存,可以進(jìn)行本地流量的卸載,減少對(duì)傳輸帶寬的需求,更好地滿足了移動(dòng)應(yīng)用高流量和低時(shí)延的需求。云計(jì)算中心的優(yōu)勢(shì)保留,關(guān)注于霧層上傳的全局性數(shù)據(jù)以及處理高延遲長(zhǎng)周期的大數(shù)據(jù)應(yīng)用。
圖2 基于霧計(jì)算的物聯(lián)網(wǎng)架構(gòu)
3? 基于云霧計(jì)算的物聯(lián)網(wǎng)的關(guān)鍵技術(shù)
3.1? 邊緣存儲(chǔ)
當(dāng)使用移動(dòng)設(shè)備的用戶處于一個(gè)特定的環(huán)境時(shí),其需要的信息主要是與本地相關(guān)的各種信息,如住宅小區(qū)的用戶更想知道的是小區(qū)內(nèi)的各種事項(xiàng)以及周邊的交通、醫(yī)療等信息;學(xué)校內(nèi)的用戶更想知道的是學(xué)校內(nèi)的各種信息,包括上課、考試、活動(dòng)等。
根據(jù)事件的流行度和用戶喜好,把用戶頻繁訪問(wèn)的內(nèi)容放在離用戶較近、訪問(wèn)速度較快的霧設(shè)備上,并在本地實(shí)時(shí)進(jìn)行優(yōu)化和計(jì)算,完成用戶請(qǐng)求的任務(wù)。霧節(jié)點(diǎn)在傳輸帶寬代價(jià)和緩存代價(jià)之間取得均衡,有效緩解云服務(wù)器的負(fù)擔(dān),大大降低通信的傳輸量,減少傳輸延遲。
霧節(jié)點(diǎn)更智能化,能夠感知其部署環(huán)境,推測(cè)出附近移動(dòng)用戶數(shù)據(jù)需求特性,針對(duì)附近用戶的興趣進(jìn)行數(shù)據(jù)緩存,為用戶提供快捷內(nèi)容訪問(wèn)和檢索功能。
3.2? 邊緣計(jì)算
霧節(jié)點(diǎn)具有智能計(jì)算的能力,可以把傳感器采集的信息進(jìn)行分析、處理,并可以選擇一部分信息卸載到其他霧節(jié)點(diǎn)或云計(jì)算中心處理。
處理某些數(shù)據(jù)時(shí),單個(gè)霧節(jié)點(diǎn)難以有效快速地分析處理,可以自適應(yīng)形成F-AP簇,通過(guò)分布式協(xié)作負(fù)載均衡計(jì)算來(lái)減小計(jì)算復(fù)雜度,提高計(jì)算速率。
3.3? 云霧協(xié)同
通過(guò)在物聯(lián)網(wǎng)網(wǎng)關(guān)部署霧節(jié)點(diǎn),在物聯(lián)網(wǎng)邊緣形成一個(gè)霧計(jì)算的平臺(tái),該平臺(tái)具備一定的數(shù)據(jù)分析及邏輯處理能力,這里引入云霧協(xié)同的概念,即霧節(jié)點(diǎn)可以通過(guò)云端進(jìn)行集中管理,簡(jiǎn)化本地節(jié)點(diǎn)的運(yùn)維復(fù)雜度。
另外,霧層的物聯(lián)網(wǎng)網(wǎng)關(guān)與云端的物聯(lián)網(wǎng)平臺(tái)實(shí)現(xiàn)對(duì)接,霧層可以將本次處理的數(shù)據(jù)上傳給物聯(lián)網(wǎng)平臺(tái)進(jìn)行深層次處理,以獲得更好的分析結(jié)果,為大數(shù)據(jù)分析提供數(shù)據(jù)支撐。
云霧協(xié)作也面臨著新的挑戰(zhàn),如何動(dòng)態(tài)區(qū)分業(yè)務(wù)在云層處理還是在霧層處理,如何制定卸載決策以更好的適應(yīng)網(wǎng)絡(luò),也是一個(gè)重點(diǎn)研究的方向。另外,云霧協(xié)同時(shí)存儲(chǔ)空間和計(jì)算能力的協(xié)同,存儲(chǔ)代價(jià)和傳輸代價(jià)的均衡是需要重點(diǎn)研究的問(wèn)題。
4? 應(yīng)用前景
4.1? 增強(qiáng)現(xiàn)實(shí)
增強(qiáng)現(xiàn)實(shí)通過(guò)在真實(shí)世界上疊加信息視圖,并在智能終端上呈現(xiàn)出來(lái)。增強(qiáng)現(xiàn)實(shí)通常需要較高的計(jì)算能力去處理數(shù)據(jù),而且人們對(duì)于時(shí)延是非常敏感的,超過(guò)數(shù)十微秒的時(shí)延將會(huì)嚴(yán)重影響用戶感知,而通過(guò)增強(qiáng)現(xiàn)實(shí)設(shè)備與周邊霧設(shè)備的協(xié)作,可以最小化時(shí)延以及實(shí)現(xiàn)傳輸吞吐量的優(yōu)化。
4.2? 分布式智能電網(wǎng)
在智能電網(wǎng)中的網(wǎng)絡(luò)邊緣設(shè)備中(霧接入點(diǎn))運(yùn)行能量負(fù)荷均衡的應(yīng)用,可以基于需求、可用性及價(jià)格等自動(dòng)選擇主電力、太陽(yáng)能、風(fēng)能等。霧接入點(diǎn)收集處理傳感器和設(shè)備生成的數(shù)據(jù),向執(zhí)行器發(fā)出控制命令,并把數(shù)據(jù)報(bào)告發(fā)送給云端,實(shí)現(xiàn)可視化管理。
4.3? 智能公共自行車系統(tǒng)
隨著污染問(wèn)題的嚴(yán)重化,自行車出行是更環(huán)保的選擇?,F(xiàn)在很多城市都有公共自行車系統(tǒng),但卻存在著用戶隨意存放,使用時(shí)尋找不夠方便等問(wèn)題。建議在每輛自行車上裝備一塊價(jià)格低廉的窄帶物聯(lián)網(wǎng)芯片,把該自行車位置和使用情況信息上傳到霧節(jié)點(diǎn),霧節(jié)點(diǎn)可以計(jì)算出覆蓋區(qū)域的自行車分布圖,用戶需要使用公共自行車時(shí),可以用手機(jī)APP查詢離他所在位置最近的公共自行車。
4.4? 智能交通燈
在智能交通場(chǎng)景中,傳感器可以感知到警車、救護(hù)車、消防車的閃光及聲音。通過(guò)霧計(jì)算設(shè)備分析,可以自動(dòng)改變道路信號(hào)燈來(lái)為緊急車輛提供通道;也可以與本地進(jìn)行交互,感知行人與車輛的存在,計(jì)算出相對(duì)的距離和速度,通過(guò)交通燈協(xié)調(diào)交通,并可以對(duì)接近的車輛發(fā)出警告信號(hào),避免交通事故的發(fā)生。同時(shí),霧計(jì)算服務(wù)器里的系統(tǒng)數(shù)據(jù),可以傳到云端,從而進(jìn)行全局的數(shù)據(jù)分析。
4.5? 智能家居
在建筑物環(huán)境中部署傳感器測(cè)量溫度、濕度和各種氣體的傳感器,通過(guò)傳感器之間的信息交互和協(xié)作,可以得到可靠的測(cè)量。霧計(jì)算設(shè)備采用分布式?jīng)Q策制定和執(zhí)行來(lái)對(duì)數(shù)據(jù)做出相應(yīng)的反應(yīng),通過(guò)霧計(jì)算及系統(tǒng)各部件可以實(shí)現(xiàn)建筑物內(nèi)外的節(jié)能,關(guān)閉及打開窗口,提高和降低溫度等。
5? 面臨的挑戰(zhàn)
基于霧計(jì)算的物聯(lián)網(wǎng)技術(shù)大規(guī)模的發(fā)展面臨著下面的問(wèn)題和挑戰(zhàn),有待于進(jìn)一步解決。
5.1? 霧層計(jì)算資源和緩存資源的聯(lián)合優(yōu)化
霧節(jié)點(diǎn)具有計(jì)算和緩存能力,兩者是密不可分的。當(dāng)用戶業(yè)務(wù)需要計(jì)算分析時(shí),霧節(jié)點(diǎn)對(duì)業(yè)務(wù)進(jìn)行計(jì)算分析,并將結(jié)果返回給用戶終端;當(dāng)用戶的業(yè)務(wù)需要緩存時(shí),霧節(jié)點(diǎn)緩存用戶的文件,經(jīng)過(guò)計(jì)算處理后才能將緩存文件傳給用戶,這體現(xiàn)了霧節(jié)點(diǎn)計(jì)算和緩存之間密不可分的關(guān)系。因此,計(jì)算能力和緩存能力的聯(lián)合優(yōu)化對(duì)霧計(jì)算來(lái)說(shuō)非常重要。
5.2? 霧網(wǎng)絡(luò)的隱私和安全性
在霧計(jì)算的環(huán)境下,同樣存在著安全和隱私問(wèn)題[16]。由于霧計(jì)算部署在網(wǎng)絡(luò)邊緣,原來(lái)在云計(jì)算環(huán)境下的安全策略并不適合霧計(jì)算。霧計(jì)算的安全問(wèn)題主要來(lái)自于不同層次網(wǎng)關(guān)的認(rèn)證,一個(gè)惡意的用戶或者應(yīng)用就可以篡改智能設(shè)備的數(shù)據(jù),需要一些入侵檢測(cè)及安全認(rèn)證技術(shù)來(lái)確保網(wǎng)絡(luò)的安全性。另外由于霧節(jié)點(diǎn)通常掌握在企業(yè)、組織甚至個(gè)人手中,用戶隱私存在一定的風(fēng)險(xiǎn),需要一些身份驗(yàn)證協(xié)議來(lái)使霧計(jì)算能保護(hù)用戶隱私,提供更加安全的保障。
6? 結(jié)束語(yǔ)
本文探討了霧計(jì)算的引入原因、概念、特點(diǎn)、架構(gòu),以及霧計(jì)算與云計(jì)算的區(qū)別和聯(lián)系;提出了基于云霧計(jì)算結(jié)合的物聯(lián)網(wǎng)網(wǎng)絡(luò)架構(gòu),通過(guò)為物聯(lián)網(wǎng)接入點(diǎn)配置霧計(jì)算設(shè)備,將接入點(diǎn)升級(jí)為具有存儲(chǔ)和計(jì)算能力的霧節(jié)點(diǎn),使得數(shù)據(jù)和計(jì)算更靠近終端設(shè)備。這樣的云霧計(jì)算結(jié)合的架構(gòu)可以更好地適應(yīng)物聯(lián)網(wǎng)的應(yīng)用需求,提高應(yīng)用系統(tǒng)的響應(yīng)速度,節(jié)約網(wǎng)絡(luò)帶寬,并大大減小了終端設(shè)備的能耗。最后討論了本文提出的網(wǎng)絡(luò)架構(gòu)的應(yīng)用前景及其所面臨的挑戰(zhàn)。霧計(jì)算和云計(jì)算是基于同一個(gè)平臺(tái)的全局性的和局部性的不同計(jì)算模式,它們相輔相成將為人們提供更多更豐富的新業(yè)務(wù)種類和體驗(yàn)。