當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀] 如果腫瘤細(xì)胞剛剛生成,就可以被精準(zhǔn)地“揪”出來,那將給腫瘤的診斷和治療帶來巨大變革。而要想實(shí)現(xiàn)這一點(diǎn),成像方式就必須具有極高的靈敏度。 近日,中科院自動(dòng)化研究所、中科院分子影像重點(diǎn)實(shí)驗(yàn)室

如果腫瘤細(xì)胞剛剛生成,就可以被精準(zhǔn)地“揪”出來,那將給腫瘤的診斷和治療帶來巨大變革。而要想實(shí)現(xiàn)這一點(diǎn),成像方式就必須具有極高的靈敏度。

近日,中科院自動(dòng)化研究所、中科院分子影像重點(diǎn)實(shí)驗(yàn)室在基于人工智能(AI)技術(shù)的新型成像方法研究上獲得了突破性進(jìn)展——研究人員將小鼠顱內(nèi)腦膠質(zhì)瘤的三維定位精度,由傳統(tǒng)方法的百微米級(jí)誤差縮小到了十微米級(jí),為疾病動(dòng)物模型乃至臨床患者的影像學(xué)研究提供了全新的思路。相關(guān)研究論文已發(fā)表于《光》期刊。

“圖像不是憑空得到的,而是成像設(shè)備獲得的,傳統(tǒng)方法往往不能提供最好的成像質(zhì)量。在人類認(rèn)知圖像之前,在成像信號(hào)轉(zhuǎn)化為圖像的過程中,會(huì)損失很多關(guān)鍵信息,人工智能技術(shù)可以突破這一瓶頸?!闭撐牡谝蛔髡?、中科院自動(dòng)化研究所副研究員王坤告訴小編,通過建立新的AI模型,把原始的物理信號(hào)轉(zhuǎn)化為更加精確、更高分辨、更少偽影、更高信噪比的高質(zhì)量圖像,無論是“人腦”還是“機(jī)器腦”,都可以更好地識(shí)別、認(rèn)知和學(xué)習(xí),這就是此項(xiàng)研究帶來的最本質(zhì)的創(chuàng)新。

一項(xiàng)極具挑戰(zhàn)性的工作

腫瘤的早期發(fā)現(xiàn)并不容易,特別是某些惡性腫瘤,潛伏期甚至長達(dá)20年,當(dāng)身體發(fā)出警報(bào)時(shí),往往已經(jīng)走到了中晚期。如何實(shí)現(xiàn)早期微小腫瘤的精準(zhǔn)檢測,及時(shí)觀測到腫瘤細(xì)胞剛出現(xiàn)時(shí)產(chǎn)生的某些特異性蛋白、酶甚至RNA,一直是科學(xué)家探索和研究的方向。

“不過,在現(xiàn)實(shí)的物理世界中,能夠提供如此高靈敏度的成像媒介并不多?!蓖趵ぬ寡裕壳肮J(rèn)最好的是高能伽馬射線和無輻射的光子,但是基于伽馬探測的放射性核素成像成本高,難以普及;光學(xué)成像成本低廉,但大都是二維圖像,缺乏三維信息。

“我們用人工智能解決的就是光學(xué)成像難以三維定量的問題?!蓖趵ふf,“也就是既可以高靈敏度地看到有沒有腫瘤,是哪種分子類型的腫瘤,還可以高精確度地知道腫瘤在哪里,有多大規(guī)模?!?/p>

王坤提到的光學(xué)成像是指生物自發(fā)光斷層成像技術(shù),該技術(shù)是生物醫(yī)學(xué)成像的重要手段,廣泛應(yīng)用于疾病動(dòng)物模型的影像學(xué)研究。然而,由于光子在生物體內(nèi)具有非均勻化的高散射和高吸收的物理特性,通過探測動(dòng)物體表的發(fā)光光斑來逆向重建出生物體內(nèi)的光源位置(即腫瘤位置),是一項(xiàng)極具挑戰(zhàn)性的工作。

清華大學(xué)醫(yī)學(xué)院生物醫(yī)學(xué)工程系研究員羅建文告訴《中國科學(xué)報(bào)》,此前,光學(xué)斷層重建問題大多是基于模型的方法,包括正問題和逆問題的求解。正問題的求解一般是利用輻射傳輸方程或者擴(kuò)散方程等模型來模擬光子在組織體中的傳播過程,進(jìn)而得到系統(tǒng)矩陣;逆問題的求解大多采用一些優(yōu)化方法,來獲得體內(nèi)光源的具體信息,如位置、形態(tài)、強(qiáng)度等。

“然而,這種基于模型的方法,勢必會(huì)受到模型近似的影響,導(dǎo)致重建精度降低?!绷_建文強(qiáng)調(diào)。據(jù)了解,正問題和逆問題求解的兩種誤差疊加在一起,最終導(dǎo)致光學(xué)斷層成像對(duì)于動(dòng)物體內(nèi)腫瘤的三維定位具有數(shù)百微米到1毫米的誤差。

機(jī)器學(xué)習(xí)帶來突破

為減少誤差,王坤所在團(tuán)隊(duì)提出基于機(jī)器學(xué)習(xí)的AI重建:完全舍棄構(gòu)建前向模型去描述光子在生物體內(nèi)的傳播,通過構(gòu)建大量的仿真數(shù)據(jù)集,在仿真數(shù)據(jù)上確定動(dòng)物體表的光斑和體內(nèi)的光源,再通過該數(shù)據(jù)集訓(xùn)練計(jì)算機(jī)智能化學(xué)習(xí)體表光斑和體內(nèi)光源的非線性關(guān)系,從而構(gòu)建出適用于生物自發(fā)光斷層成像的AI模型,最終三維重建活體動(dòng)物荷瘤模型內(nèi)的腫瘤三維分布。

“此項(xiàng)研究首次將機(jī)器學(xué)習(xí)中的多層感知機(jī)方法應(yīng)用于光學(xué)斷層重建,并且提出了自己的數(shù)據(jù)集構(gòu)造方法,實(shí)現(xiàn)了直接由數(shù)據(jù)到結(jié)果的跨模型創(chuàng)新框架,使得重建定位誤差縮小到傳統(tǒng)方法的十分之一,同時(shí)這也提示了可以用人工智能方法去解決光學(xué)斷層重建問題?!绷_建文評(píng)價(jià)道。

不過,王坤強(qiáng)調(diào),生物自發(fā)光斷層成像涉及到腫瘤細(xì)胞的基因編輯和改造,所以只能用在動(dòng)物身上,不能用于人體,但是他們發(fā)展出的基于AI的光學(xué)三維重建方法具有推廣性,理論上可以用在其它光學(xué)分子影像的成像技術(shù)上,例如激發(fā)熒光成像、近紅外成像等等。因此,該方法本身具有很好的臨床轉(zhuǎn)化應(yīng)用能力。

數(shù)據(jù)收集與分析面臨挑戰(zhàn)

機(jī)器學(xué)習(xí)的基礎(chǔ)是數(shù)據(jù),而對(duì)于生物醫(yī)學(xué)成像來說,構(gòu)建大數(shù)據(jù)集是非常困難的事情。

“比如我們的這個(gè)研究,構(gòu)建了近8000個(gè)腦膠質(zhì)瘤荷瘤的小鼠模型來訓(xùn)練我們的機(jī)器學(xué)習(xí)模型。如果真的讓生物學(xué)家去一個(gè)個(gè)構(gòu)建原位腦膠質(zhì)瘤小鼠模型,需要很長時(shí)間,并投入巨大的人力和財(cái)力,是非常不切實(shí)際的?!蓖趵ふf。

“我們構(gòu)建的仿真數(shù)據(jù),達(dá)到了非常高的精度,很好地模擬了現(xiàn)實(shí)的腫瘤動(dòng)物?!蓖趵け硎?,他們用生物學(xué)家構(gòu)建的真實(shí)腦膠質(zhì)瘤小鼠來驗(yàn)證訓(xùn)練出來的人工智能模型是否精確可靠,最終結(jié)果表明,新型人工智能方法對(duì)于腦膠質(zhì)瘤的三維定位誤差均小于80微米,而傳統(tǒng)方法的定位誤差為350微米以上。

不過,在實(shí)際臨床應(yīng)用中,數(shù)據(jù)的收集和解析并不容易。羅建文表示,機(jī)器學(xué)習(xí)特別是深度學(xué)習(xí),最重要的就是數(shù)據(jù),包括數(shù)據(jù)的質(zhì)量和數(shù)量。目前在醫(yī)學(xué)成像領(lǐng)域,雖然收集到大量的數(shù)據(jù)比較容易,但是這些數(shù)據(jù)被標(biāo)記后才能用于建模,受個(gè)體差異影響很大。由于不同醫(yī)生的診斷結(jié)果不同,數(shù)據(jù)的質(zhì)量會(huì)受到影響,用它訓(xùn)練出的網(wǎng)絡(luò)就會(huì)存在問題。

同時(shí),羅建文表示,在診斷、治療、預(yù)后等一系列環(huán)節(jié)中,對(duì)于一些疾病的定性描述,不同的醫(yī)生也存在很大的自由度,很難統(tǒng)一說法;不同品牌甚至同一品牌但不同型號(hào)的醫(yī)療設(shè)備采集到的圖像,也存在較大差異。這些不統(tǒng)一的數(shù)據(jù),都會(huì)影響深度學(xué)習(xí)的分析結(jié)果。

“還有一個(gè)重要的因素就是模型的因果性和可解釋性?!绷_建文強(qiáng)調(diào),“醫(yī)學(xué)與人的生命息息相關(guān),所以做任何一件事都要有理有據(jù),都要有因果推論的關(guān)系。但是,做機(jī)器學(xué)習(xí)模型時(shí),很容易陷入直接對(duì)相關(guān)性進(jìn)行建模的陷阱。相關(guān)性建模涉及的兩個(gè)因素未必有直接的因果關(guān)系。得出的模型,如何解釋其結(jié)果的意義,是一個(gè)很難處理的事情。”

臨床任重道遠(yuǎn)

在羅建文看來,深度學(xué)習(xí)擅長處理的就是高維度、稀疏的信號(hào),圖像就是這些信號(hào)中一種有代表性的形式,因此,AI在醫(yī)學(xué)影像處理上的應(yīng)用必然是一個(gè)熱點(diǎn)方向。

“醫(yī)學(xué)影像處理的典型問題包括影像分類、目標(biāo)檢測、圖像分割和影像檢索等,都能對(duì)應(yīng)到日常臨床應(yīng)用里的一些痛點(diǎn)或比較浪費(fèi)人力的問題。”羅建文建議,影像醫(yī)師應(yīng)該投入到AI技術(shù)的學(xué)習(xí)和應(yīng)用中,AI技術(shù)也許很快就能協(xié)助影像醫(yī)生完成一部分工作,也有潛力使現(xiàn)有的工作得到提升。

不過,上海中醫(yī)藥大學(xué)附屬曙光醫(yī)院放射科主任詹松華站在醫(yī)生的角度表示,AI在發(fā)現(xiàn)病變方面肯定大有作為,但是代替醫(yī)生來處理,很難。“發(fā)現(xiàn)病變特點(diǎn),然后區(qū)別正常和異常,到底是炎癥還是腫瘤,最終還是由醫(yī)生來做診斷?!?/p>

詹松華認(rèn)為,AI用于生物醫(yī)學(xué)影像的方向是對(duì)的,但是目前需要更多的科研投入,需要將醫(yī)師和工程師很好地整合起來,AI人士需要傾聽臨床的聲音,了解醫(yī)生的切實(shí)需求。另外,AI解決假陰性率是關(guān)鍵,要提高AI機(jī)器判斷的確定性,從而為醫(yī)生省時(shí)節(jié)力。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉