機(jī)器學(xué)習(xí)技術(shù)如何影響人工智能領(lǐng)域
機(jī)器學(xué)習(xí)技術(shù)不僅僅影響著當(dāng)前的人工智能領(lǐng)域,在筆者看來(lái),機(jī)器學(xué)習(xí)當(dāng)中的算法技術(shù)甚至還可能影響到大數(shù)據(jù)對(duì)于很多領(lǐng)域的應(yīng)用深度和廣度,對(duì)于機(jī)器學(xué)習(xí)的算法來(lái)說(shuō),我們可以描述成學(xué)習(xí)一個(gè)目標(biāo)函數(shù)f,它能夠最好地映射出輸入變量X到輸出變量Y。有一類普遍的學(xué)習(xí)任務(wù)。我們要根據(jù)輸入變量X來(lái)預(yù)測(cè)出Y。我們不知道目標(biāo)函數(shù)f是什么樣的。如果早就知道,我們就可以直接使用它,而不需要再通過(guò)機(jī)器學(xué)習(xí)算法從數(shù)據(jù)中進(jìn)行學(xué)習(xí)了。
接下來(lái)我們就來(lái)了解一下常見(jiàn)的幾種機(jī)器學(xué)習(xí)算法以及其原理構(gòu)成。
線性回歸
線性回歸是機(jī)器學(xué)習(xí)應(yīng)用比較廣泛的一類概念和技術(shù),線性回歸通過(guò)找到一組特定的權(quán)值,稱為系數(shù)B。通過(guò)最能符合輸入變量x到輸出變量y關(guān)系的等式所代表的線表達(dá)出來(lái)。
不同的技巧可以用于線性回歸模型。比如線性代數(shù)的普通最小二乘法,以及梯度下降優(yōu)化算法。線性回歸已經(jīng)有超過(guò)200年的歷史,已經(jīng)被廣泛地研究。根據(jù)經(jīng)驗(yàn),這種算法可以很好地消除相似的數(shù)據(jù),以及去除數(shù)據(jù)中的噪聲。它是快速且簡(jiǎn)便的首選算法。
邏輯回歸
邏輯回歸是另外一種從統(tǒng)計(jì)領(lǐng)域借鑒而來(lái)的機(jī)器學(xué)習(xí)算法,和線性回歸一樣,它的目的是找出每個(gè)輸入變量所對(duì)應(yīng)的參數(shù)值,但不同的是,預(yù)測(cè)輸出所用的變換是一個(gè)被稱作logisTIc的非線性函數(shù)。
正是因?yàn)槟P蛯W(xué)習(xí)的這種方式,邏輯回歸做出的預(yù)測(cè)可以被當(dāng)做輸入為0和1兩個(gè)分類數(shù)據(jù)的概率值。這在一些需要給出預(yù)測(cè)合理性的問(wèn)題中非常有用。就像線性回歸,在需要移除與輸出變量無(wú)關(guān)的特征以及相似特征方面,邏輯回歸可以表現(xiàn)得很好。在處理二分類問(wèn)題上,它是一個(gè)快速高效的模型。
線性判別分析
邏輯回歸是一個(gè)二分類的算法問(wèn)題,當(dāng)然如果需要去進(jìn)行更多的分類,限行判別分析算法,也就是LDA是一種更好的線性分類方式。LDA包含對(duì)每一類輸入數(shù)據(jù)的統(tǒng)計(jì)特性(包含類內(nèi)樣本均值和總體樣本變量)。通過(guò)計(jì)算每個(gè)類的判別值,并根據(jù)最大值來(lái)進(jìn)行預(yù)測(cè)。這種方法假設(shè)數(shù)據(jù)服從高斯分布(鐘形曲線)。所以它可以較好地提前去除離群值。它是針對(duì)分類模型預(yù)測(cè)問(wèn)題的一種簡(jiǎn)單有效的方法。
回歸樹(shù)分析方法
決策樹(shù)式機(jī)器學(xué)習(xí)預(yù)測(cè)建模的一類重要算法,對(duì)于機(jī)器學(xué)習(xí)來(lái)說(shuō),可以用二叉樹(shù)去解釋決策樹(shù)模型,也就是根據(jù)算法和數(shù)據(jù)結(jié)構(gòu)去建立起二叉樹(shù)的模型,每個(gè)節(jié)點(diǎn)都是代表一個(gè)輸入變量以及變量的分叉點(diǎn),可以假設(shè)它是數(shù)值變量,樹(shù)的葉節(jié)點(diǎn)包括用于預(yù)測(cè)的輸出變量y。通過(guò)樹(shù)的各分支到達(dá)葉節(jié)點(diǎn),并輸出對(duì)應(yīng)葉節(jié)點(diǎn)的分類值。
樸素貝葉斯
這個(gè)模型包括兩種概率。它們可以通過(guò)訓(xùn)練數(shù)據(jù)直接計(jì)算得到:每個(gè)類的概率;給定x值情況下每個(gè)類的條件概率。根據(jù)貝葉斯定理,一旦完成計(jì)算,就可以使用概率模型針對(duì)新的數(shù)據(jù)進(jìn)行預(yù)測(cè)。