醫(yī)學(xué)光子技術(shù)主要內(nèi)容的探討
人們致力的目標(biāo)是:發(fā)展無輻射損傷、高分辨率的生物組織光學(xué)成像方法與技術(shù),同時應(yīng)具有非侵入式、實時、安全、經(jīng)濟(jì)、小型、且能監(jiān)測活體組織內(nèi)部處于自然狀態(tài)化學(xué)成分的特點。目前研究工作主要集中在以下幾個方面:
1.時間分辨成像技術(shù),它以超短脈沖激光作為光源,根據(jù)光脈沖在組織內(nèi)傳播時的時間分辨特性,使用門控技術(shù)分離出漫反射脈沖中未被散射的所謂早期光,進(jìn)行成像。正在研究的典型時間門有條紋照相機、克爾門、電子全息等。該項技術(shù)是光學(xué)層析(斷層)造影(OT)技術(shù)中最主要的一種;
2.相干分辨成像技術(shù)(OCT)。它采用的是弱相干光光源(如,弱相干脈沖激光或?qū)拵У姆窍喔晒夤庠?,其相干長度很短(如20μm)。利用光源的低相干性能通過散射介質(zhì)來實現(xiàn)成像,實現(xiàn)手段有干涉儀、全息術(shù)等;
3.漫射光子密度波成像技術(shù)。透過生物組織的漫射光占相當(dāng)大的比例,也可利用它進(jìn)行醫(yī)學(xué)成像。高頻調(diào)制的光射入生物組織,被漫射后的光子在生物組織內(nèi)部呈周期分布,形成漫射光子密度波。這種光子密度波以一定的相速度和振幅衰減系數(shù)在生物組織中傳播,又被折射、衍射、色散、散射,因而使之出射光攜帶生物組織內(nèi)部結(jié)構(gòu)的信息。測量其振幅和相位,再經(jīng)過計算機數(shù)據(jù)處理便能夠得到生物組織的有關(guān)圖像。
4.圖像重建技術(shù)。生物散射介質(zhì)的結(jié)構(gòu)特征信息隱含在漫射光中。若能找到描述光在介質(zhì)中遷徙規(guī)律,通過測試漫射光的有關(guān)參數(shù),在眼光的散射路徑逆向追溯,則應(yīng)能重建散射介質(zhì)結(jié)構(gòu)圖像。如采用鎖摸激光器作光源,條紋相機測試散射體周圍的漫射光的時間分辨參量,再用逆問題算法進(jìn)行圖像重建。目前,逆問題算法大體有兩類:一類為蒙特卡羅法,采用這種方法,圖像重建精度高,但是計算復(fù)雜;另一類是基于光的傳輸方程,采用優(yōu)化算法,根據(jù)測試周圍時間分辨率漫射光的信號進(jìn)行圖像重建。
除了上面四種技術(shù)外,近年來還發(fā)展了其它一些生物組織成像技術(shù),如空間選通門成像技術(shù)、時間分辨熒光成像、受激喇曼散射成像以及光聲醫(yī)學(xué)成像技術(shù)等。目前,國際上光學(xué)醫(yī)學(xué)成像技術(shù)尚處于初始研究階段,離實用化還有相當(dāng)距離,但人們已經(jīng)看到它初露曙光。
醫(yī)用半導(dǎo)體激光及其應(yīng)用技術(shù) 由于半導(dǎo)體激光器具有體積小、效率高、壽命場合多種波長可供選擇等一系列顯著優(yōu)點,所以它在激光診斷醫(yī)療技術(shù)中有逐漸取代其他多種激光器的趨勢,從而有可能成為激光醫(yī)用儀器的最主要光源。目前的狀況是:低功率半導(dǎo)體激光器,波長為800nm~900nm,功率為3~10mW,已逐漸替代He-Ne激光器作照射治療和光針療法,以及作各種指示光源;中功率器件,波長652nm~690nm,功率1~5W,已逐漸替代染料激光用于光動力療法,可治療較深部的腫瘤;高功率半導(dǎo)體激光器,也有可能替代Nd:YAG激光治療機。如波長為800nm~900,功率為30W的高功率半導(dǎo)體激光,穿透組織深,適用于Nd:YAG激光所能治療的大部分病種。
其它醫(yī)用激光技術(shù)發(fā)展動向 近年來,值得注意的研究動向還有:其一是新工作波長激光醫(yī)療儀器的開拓;其二是Ho:YAG和Er:YAG激光手術(shù)刀走向?qū)嵱没?其三是腔內(nèi)治療適用的光纖內(nèi)窺式激光醫(yī)療技術(shù)的開發(fā);其四是激光醫(yī)療設(shè)備實現(xiàn)智能化。
.醫(yī)學(xué)光子技術(shù)分為兩大類:光子診斷醫(yī)學(xué)技術(shù)與光子治療醫(yī)學(xué)技術(shù),前者是以光子作為信息載體,后者則以光子作為能量載體。 目前,無論是光診斷還是光治療技術(shù),多以激光為光源。如果著眼于人體應(yīng)用為對象,這兩種技術(shù)則歸屬于激光醫(yī)學(xué)范疇。激光醫(yī)學(xué)是醫(yī)學(xué)光子技術(shù)的一個特有的重要應(yīng)用領(lǐng)域,也是近多年來迅猛興起的一個新學(xué)科分支。
根據(jù)國際、國內(nèi)的發(fā)展情況,以下諸點是醫(yī)學(xué)光子技術(shù)的主要研究內(nèi)容:
醫(yī)學(xué)光譜技術(shù)
激光光譜以其極高的光譜和時間分辨率、靈敏度、精確度以及無損、安全、快速等優(yōu)點而成為醫(yī)學(xué)光子學(xué)的重要研究領(lǐng)域。隨著激光光譜技術(shù)在醫(yī)學(xué)領(lǐng)域應(yīng)用研究的深入開展,一門有發(fā)展?jié)摿蛻?yīng)用前景的“醫(yī)學(xué)光譜學(xué)”逐漸形成。
1.生物組織的自體熒光與藥物熒光光譜。已對激光誘導(dǎo)生物組織自體熒光和藥物熒光診斷動脈粥樣斑塊和惡性腫瘤進(jìn)行了臨床前的研究。內(nèi)容涉及光敏劑的吸收譜、激發(fā)與發(fā)射熒光譜以及各種波長激光激發(fā)下正常組織與病變組織內(nèi)源性熒光基團(tuán)特征光譜等。在此基礎(chǔ)上還研究了用于癌瘤診斷和定位的實時熒光圖像處理系統(tǒng)。
激光熒光光譜診斷腫瘤技術(shù)的研究一直倍受關(guān)注,光譜檢驗法的靈敏度很高,如能找到腫瘤細(xì)胞的特征熒光峰,來診斷癌細(xì)胞的存在,則對腫瘤的早期診斷和治療將起巨大作用。但至今該技術(shù)在臨床上無法單獨作為癌細(xì)胞檢測的依據(jù),關(guān)鍵原因是尚未找到癌細(xì)胞真正的特征熒光峰?,F(xiàn)在人們所謂的特征熒光峰實際上只是卟啉分子的熒光峰。客觀和科學(xué)地判斷激光熒光光譜對腫瘤的診斷標(biāo)準(zhǔn)是十分必要的。
目前,某些癌瘤的藥物熒光診斷已進(jìn)入臨床試用,自體熒光的應(yīng)用尚處于摸索之中。需要開展激光激發(fā)生物組織和細(xì)胞內(nèi)物質(zhì)的機理研究,探討激光誘發(fā)組織自體熒光與癌組織病理類型的相關(guān)性以及新型光敏劑的熒光譜、熒光產(chǎn)額和最佳激發(fā)波長等方面的研究,以期獲得極其穩(wěn)定、可靠的特征數(shù)據(jù),為診斷技術(shù)的發(fā)展提供科學(xué)依據(jù)。
2.生物組織的喇曼光譜。近年來,喇曼光譜技術(shù)應(yīng)用于醫(yī)學(xué)中已顯示出它在靈敏度、分辨率、無損傷等方面的優(yōu)勢,克服了熒光光譜技術(shù)區(qū)分病變組織是由于生物大分子熒光帶較寬、易于重疊對準(zhǔn)確診斷帶來的影響。目前,這一研究領(lǐng)域尚處于起步階段,應(yīng)加緊開展以下研究工作:其一,對重要醫(yī)學(xué)物質(zhì)的喇曼光譜進(jìn)行研究,并建立其光譜數(shù)據(jù)庫(包括分子組分與結(jié)構(gòu)相對應(yīng)的敏感特征譜線及其強度等);其二,研究疾病的喇曼光譜,分析從正常到病變過程中生物組分的變化與發(fā)病機理;其三,開發(fā)小型、高效、適用于體表與體內(nèi)的醫(yī)用喇曼光譜儀和診斷儀。
3.生物組織的超快時間分辨光譜。超快時間分辨光譜比穩(wěn)態(tài)光譜在技術(shù)上更靈敏、更客觀和更具有選擇性。因此,將脈寬為ps、fs量級的超短激光脈沖光源用于醫(yī)學(xué)受到廣泛重視,其一,應(yīng)發(fā)展超快時間分辨熒光光譜技術(shù),用于測量生物組織及生物分子的熒光衰變時間,分析癌組織分子馳豫動力學(xué)性質(zhì)等,為進(jìn)一步研究自體熒光法診斷惡性腫瘤提供基礎(chǔ)數(shù)據(jù);其二,應(yīng)發(fā)展超快時間分辨漫反射(透射)光譜技術(shù)。以時域的角度測量組織的漫反射,從而間接確定組織的光學(xué)特征。這是一種全新的、適用于活體的、無損和實時的測量方法,為確知光與生物組織的相互作用,解決醫(yī)學(xué)光子學(xué)中基礎(chǔ)測量問題開辟一條新徑。應(yīng)抓緊開展原理與技術(shù)的研究,以獲得有價值的活體光學(xué)參數(shù),為光診斷與光治療技術(shù)的發(fā)展提供依據(jù)。