高功率半導(dǎo)體激光器歷史介紹
隨著效率和功率的不斷提高,激光二極管將繼續(xù)取代傳統(tǒng)技術(shù),改變現(xiàn)有事物的處理方式,同時促生新事物的誕生。
傳統(tǒng)上,經(jīng)濟學(xué)家認為技術(shù)進步是一個漸進的過程。最近,行業(yè)更多焦點集中在了能引起不連續(xù)性的顛覆性創(chuàng)新領(lǐng)域。這些創(chuàng)新被稱為通用技術(shù)(GPTs),是“可能對經(jīng)濟領(lǐng)域許多方面產(chǎn)生重要影響的深刻的新思想或新技術(shù)”。通用技術(shù)通常需要幾十年的發(fā)展,甚至是更長時間才能帶來生產(chǎn)率的提高。一開始它們并沒有被很好地理解,即使在技術(shù)實現(xiàn)商業(yè)化之后,生產(chǎn)采用也有一個長期的滯后。集成電路就是一個很好的案例。晶體管在20世紀初期實現(xiàn)首次展示,但是其廣泛商用直到很晚的后期才實現(xiàn)。
摩爾定律的創(chuàng)始人之一摩爾(Gordon Moore)在1965年曾預(yù)言,半導(dǎo)體將會以較快的速度發(fā)展,從而“帶來電子學(xué)的普及,并將這一科學(xué)推向許多新的領(lǐng)域”。盡管他做出了大膽而出人意料的準確預(yù)測,但在實現(xiàn)生產(chǎn)力提高和經(jīng)濟增長之前,卻經(jīng)過了幾十年的持續(xù)改進。
同樣,對高功率半導(dǎo)體激光器戲劇性發(fā)展的認識也是有限的。1962年業(yè)界首次演示了電子轉(zhuǎn)換為激光,隨后出現(xiàn)了大量進展,這些進展都促使電子轉(zhuǎn)換成高產(chǎn)率激光過程的顯著改進。這些改進能支持一系列重要應(yīng)用,包括光存儲、光網(wǎng)絡(luò)以及廣泛的工業(yè)應(yīng)用等。
回顧這些進展以及帶來的眾多改善,都突出強調(diào)了其對于經(jīng)濟領(lǐng)域許多方面帶來更大、更普遍影響的可能性。事實上,隨著高功率半導(dǎo)體激光器的不斷改進,重要應(yīng)用的范圍將會加大并對經(jīng)濟增長帶來深遠影響。
高功率半導(dǎo)體激光器歷史
1962年9月16日,通用電氣公司的羅伯特·霍爾 (Robert Hall)帶領(lǐng)的研究小組展示了砷化鎵(GaAs)半導(dǎo)體的紅外發(fā)射,這種半導(dǎo)體具有“奇怪的”干涉圖形,意味著相干激光 - 首個半導(dǎo)體激光器的誕生?;魻栕畛跽J為半導(dǎo)體激光器是一個“遠射”,因為當時的發(fā)光二極管效率非常低。同時他對此也持有懷疑態(tài)度,因為當時兩年前才被證實、已經(jīng)存在的激光器,需要“精美的鏡子”。
1962年夏天,霍爾表示,對于麻省理工學(xué)院林肯實驗室研發(fā)的效率更高的砷化鎵發(fā)光二極管,他感到相當震驚。隨后,他表示很幸運能通過一些高質(zhì)量的GaAs材料進行測試,并利用他作為一個業(yè)余天文學(xué)家的經(jīng)驗,開發(fā)出了一種方法來拋光GaAs芯片邊緣,形成一個腔體。
霍爾成功的演示是基于輻射在交界面上來回反彈,而不是垂直反彈的設(shè)計。他謙虛地表示,此前沒有人“碰巧提出這個想法。”實際上,霍爾的設(shè)計本質(zhì)上是一個幸運的巧合,即形成波導(dǎo)的半導(dǎo)體材料也具有同時限制雙極載流子的性質(zhì)。否則就不可能實現(xiàn)半導(dǎo)體激光器。通過使用不相似的半導(dǎo)體材料,可以形成平板波導(dǎo)以使光子與載流子重疊。
在通用電氣公司進行的這些初步演示是一項重大突破。然而,這些激光器遠不是實用的器件,為了促使高功率半導(dǎo)體激光器的誕生,必須實現(xiàn)不同技術(shù)的融合。關(guān)鍵技術(shù)創(chuàng)新始于對直接帶隙半導(dǎo)體材料和晶體生長技術(shù)的理解。
后來的發(fā)展包括雙異質(zhì)結(jié)激光器的發(fā)明和量子阱激光器的后續(xù)發(fā)展。進一步增強這些核心技術(shù)的關(guān)鍵在于效率的提高以及腔面鈍化、散熱和封裝技術(shù)的發(fā)展。
亮度
過去幾十年的創(chuàng)新帶來了激動人心的改進。特別是,亮度方面的改進非常出色。 1985年,當時最先進的高功率半導(dǎo)體激光器可以將105毫瓦的功率耦合到105微米的芯徑光纖中。最先進的高功率半導(dǎo)體激光器現(xiàn)在可以產(chǎn)生超過250瓦、擁有單一波長的105微米光纖 - 每八年增長10倍。
摩爾構(gòu)思“將更多元件固定在集成電路上”-隨后,每個芯片晶體管的數(shù)量每7年增加10倍。巧合的是,高功率半導(dǎo)體激光器以類似的指數(shù)速率將更多的光子融入光纖(見圖1)。
圖1. 大功率半導(dǎo)體激光器亮度以及和摩爾定律比較
大功率半導(dǎo)體激光器亮度的改進促進了各種不可預(yù)見技術(shù)的發(fā)展。雖然這一趨勢的延續(xù)還需要更多創(chuàng)新,但有理由相信半導(dǎo)體激光技術(shù)的創(chuàng)新還遠未完成。人們所熟知的物理學(xué)可以通過持續(xù)的技術(shù)發(fā)展進一步提高半導(dǎo)體激光器的性能。
例如,相比當前的量子阱器件而言,量子點增益介質(zhì)可以顯著提高效率。慢軸亮度提供了另一個數(shù)量級的改進潛力。具有改進的散熱和擴展匹配的新型包裝材料將提供持續(xù)功耗調(diào)整和簡化熱管理所需的增強功能。這些關(guān)鍵發(fā)展將為未來幾十年高功率半導(dǎo)體激光器的發(fā)展提供路線圖。