當(dāng)前位置:首頁(yè) > 智能硬件 > 人工智能AI
[導(dǎo)讀]   現(xiàn)在都在談?wù)撊斯ぶ悄芑蛘叽髷?shù)據(jù)相關(guān)的知識(shí),但是與之相關(guān)的機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等你能分清嗎?數(shù)據(jù)科學(xué)比機(jī)器學(xué)習(xí)范圍大得多,數(shù)據(jù)科學(xué)實(shí)際上涵蓋了整個(gè)數(shù)據(jù)處理的范圍,而不只是算法或者統(tǒng)計(jì)學(xué)方面。

  現(xiàn)在都在談?wù)撊斯ぶ悄芑蛘叽髷?shù)據(jù)相關(guān)的知識(shí),但是與之相關(guān)的機(jī)器學(xué)習(xí)、深度學(xué)習(xí)等你能分清嗎?數(shù)據(jù)科學(xué)比機(jī)器學(xué)習(xí)范圍大得多,數(shù)據(jù)科學(xué)實(shí)際上涵蓋了整個(gè)數(shù)據(jù)處理的范圍,而不只是算法或者統(tǒng)計(jì)學(xué)方面。

  數(shù)據(jù)科學(xué)是個(gè)廣義的學(xué)科, AnalyTIcs data scienTIst(Type A)和Builder data scienTIst(Type B)有所不同,Type A Data ScienTIsts在工作中遇到數(shù)據(jù)相關(guān)時(shí)可以寫出不錯(cuò)的代碼,但是并不必須是專家,這類data scientist可能專業(yè)是實(shí)驗(yàn)設(shè)計(jì)、預(yù)測(cè)、建模、統(tǒng)計(jì)推斷或者其他統(tǒng)計(jì)學(xué)研究的典型部分。

  但是一般而言,數(shù)據(jù)科學(xué)家的工作產(chǎn)出可不是學(xué)術(shù)統(tǒng)計(jì)學(xué)有時(shí)候建議的那樣“p-values and confidence intervals”(正如有時(shí)候傳統(tǒng)的藥物領(lǐng)域統(tǒng)計(jì)學(xué)家會(huì)用到那樣)。在Google,Type A Data Scientists通常指統(tǒng)計(jì)學(xué)家、定量分析師、決策支持技術(shù)分析師或者數(shù)據(jù)科學(xué)家,可能還有其他的一些。

  Type B Data Scientists是building data的。B類和A類有些相同的統(tǒng)計(jì)學(xué)背景,但他們還是更好的coders,可能有專業(yè)的軟件工程的訓(xùn)練。他們主要對(duì)在產(chǎn)品中使用數(shù)據(jù)感興趣,他們建立與用戶交互的模型,通常是提供推薦的(產(chǎn)品、可能認(rèn)識(shí)的人、廣告電影、搜索結(jié)果之類)。

  

  1.機(jī)器學(xué)習(xí) vs 深度學(xué)習(xí)

  在深度探討machine learning和data science的聯(lián)系之前,這里簡(jiǎn)要地討論一下machine learning 和deep learning。machine learning是一套算法,來訓(xùn)練數(shù)據(jù)集做預(yù)測(cè)或者采取行動(dòng)以使得系統(tǒng)最優(yōu)化。舉例來說,supervised classification algorithms被用來根據(jù)歷史數(shù)據(jù)將想要貸款的客戶分成預(yù)期好的和預(yù)期差的(good or bad prospects)。對(duì)于給定的任務(wù)(比如監(jiān)督聚類),需要的技術(shù)多種多樣:naive Bayes、SVM、neural nets、ensembles、association rules、decision trees、logistic regression,或者是很多技術(shù)的組合。所有這些都是數(shù)據(jù)科學(xué)的子集。當(dāng)這些算法自動(dòng)化后,比如無人駕駛飛機(jī)或者無人駕駛汽車,這就叫AI了,或者說的具體一點(diǎn),deep learning。如果采集的數(shù)據(jù)來自傳感器并且通過互聯(lián)網(wǎng)傳播,那么這就是機(jī)器學(xué)習(xí)或數(shù)據(jù)科學(xué)或深度學(xué)習(xí)應(yīng)用于物聯(lián)網(wǎng)了。

  有些人對(duì)深度學(xué)習(xí)有不同的定義,他們認(rèn)為深度學(xué)習(xí)是更深層次的神經(jīng)網(wǎng)絡(luò)(一種機(jī)器學(xué)習(xí)的技術(shù))。AI(Artificial Intelligence)是創(chuàng)建于20世紀(jì)60年代的計(jì)算機(jī)科學(xué)的一個(gè)子領(lǐng)域,是關(guān)于解決那些對(duì)人類來講非常容易但是對(duì)計(jì)算機(jī)而言很難的任務(wù)。值得一提的是,所謂的strong AI可能可以做所有人類可以做的事情(可能除了純粹的物理問題)。這是相當(dāng)廣泛的,包括各種各樣的事情,比如做計(jì)劃,在世界上到處溜達(dá),識(shí)別物體和聲音,說話,翻譯,社交或者商業(yè)交易,還有創(chuàng)造性工作(比如寫詩(shī)畫畫)等等。

  NLP(Natural language processing)只是AI要處理的語言部分,尤其是寫。

  Machine learning是這樣的一種情況:給出一些可以被以離散形式描述的AI問題(比如從一系列動(dòng)作中選出對(duì)的那個(gè)),然后給定一堆外部世界的信息,在不需要程序員手動(dòng)寫程序的情況下選出那個(gè)“正確的”行為。通常情況需要借助外界的一些過程來判斷這個(gè)動(dòng)作對(duì)不對(duì)。在數(shù)學(xué)上,這就是函數(shù):你給一些輸入,然后你想要他處理一下得到正確的輸出,所以整個(gè)問題就簡(jiǎn)化為用一些自動(dòng)的方式建立這種數(shù)學(xué)函數(shù)模型。和AI區(qū)分一下:如果我寫了一段特別機(jī)智的程序有著人類的行為,那這就可以是AI,但是除非它的參量都是自動(dòng)從數(shù)據(jù)中學(xué)會(huì)的,否則就不是機(jī)器學(xué)習(xí)。

  Deep learning是當(dāng)下非常流行的機(jī)器學(xué)習(xí)的一種。它包含一種特殊的數(shù)學(xué)模型,可以想成是一種特定類型的簡(jiǎn)單塊的組合(或者說是塊的功能的組合),這些塊可以進(jìn)行調(diào)整來更好的預(yù)測(cè)最終結(jié)果。

  2. Data Science VS Machine Learning

  機(jī)器學(xué)習(xí)和統(tǒng)計(jì)學(xué)都是數(shù)據(jù)科學(xué)的一部分。Learning這個(gè)詞在machine learning里意味著依賴于某些數(shù)據(jù)的算法,被用作一種訓(xùn)練模式集來調(diào)整一些模型或者算法參數(shù)。這包含很多技術(shù),比如回歸、樸素貝葉斯或者監(jiān)督聚類。但不是所有的技術(shù)都適合這個(gè)分類。比如,非監(jiān)督聚類——一種統(tǒng)計(jì)學(xué)和數(shù)據(jù)科學(xué)的方法——旨在不依靠任何先驗(yàn)知識(shí)和訓(xùn)練集監(jiān)測(cè)聚類或聚類結(jié)構(gòu)來幫助分類算法。需要有人來標(biāo)注被發(fā)現(xiàn)的聚類。有些技術(shù)是混合的,比如半監(jiān)督分類。有些模式偵查或者密度評(píng)估技術(shù)適合這個(gè)分類。

  然而數(shù)據(jù)科學(xué)比機(jī)器學(xué)習(xí)范圍大得多。數(shù)據(jù)科學(xué)里“data”,可能是也可能不是來自機(jī)器或者機(jī)械過程的(調(diào)查結(jié)果可能是人工采集的,臨床試驗(yàn)需要一種特殊類型的small data等),而且可能和上面提到的”learning”一點(diǎn)關(guān)系也沒有。但是主要的不同還是因?yàn)閿?shù)據(jù)科學(xué)實(shí)際上涵蓋了整個(gè)數(shù)據(jù)處理的范圍,而不只是算法或者統(tǒng)計(jì)學(xué)方面。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉