如何處理工業(yè)電機(jī)驅(qū)動(dòng)IGBT過流和短路保護(hù)問題?
工業(yè)電機(jī)驅(qū)動(dòng)的整個(gè)市場(chǎng)趨勢(shì)是對(duì)更高效率以及可靠性和穩(wěn)定性的要求不斷提高。有關(guān)增加絕緣柵極雙極性晶體管(IGBT)導(dǎo)通損耗的一些權(quán)衡取舍是:更高的 短路電流電平、更小的芯片尺寸,以及更低的熱容量和短路耐受時(shí)間。這凸顯了柵極驅(qū)動(dòng)器電路以及過流檢測(cè) 和保護(hù)功能的重要性。以下內(nèi)容討論了現(xiàn)代工業(yè)電機(jī)驅(qū)動(dòng)中成功可靠地實(shí)現(xiàn)短路保護(hù)的問題,同時(shí)提供三相電機(jī)控制應(yīng)用中隔離式柵極驅(qū)動(dòng)器的實(shí)驗(yàn)性示例。
工業(yè)環(huán)境中的短路有哪些?
工業(yè)電機(jī)驅(qū)動(dòng)器的工作環(huán)境相對(duì)惡劣,可能出現(xiàn)高溫、交流線 路瞬變、機(jī)械過載、接線錯(cuò)誤以及其它突發(fā)情況。其中有些事 件可能會(huì)導(dǎo)致較大的過流流入電機(jī)驅(qū)動(dòng)器的功率電路中。圖1顯 示了三種典型的短路事件。
圖1. 工業(yè)電機(jī)驅(qū)動(dòng)中的典型短路事件
它們是:
逆變器直通。這可能是由于不正確開啟其中一條逆變器橋臂 的兩個(gè)IGBT所導(dǎo)致的,而這種情況又可能是因?yàn)樵馐芰穗姶?干擾或控制器故障。它也可能是因?yàn)楸凵系钠渲幸粋€(gè)IGBT磨 損/故障導(dǎo)致的,而正常的IGBT保持開關(guān)動(dòng)作。
相對(duì)相短路。這可能是因?yàn)樾阅芟陆?、溫度過高或過壓事件 導(dǎo)致電機(jī)繞組之間發(fā)生絕緣擊穿所引起的。
相線對(duì)地短路。這同樣可能是因?yàn)樾阅芟陆?、溫度過高或過 壓事件導(dǎo)致電機(jī)繞組和電機(jī)外殼之間發(fā)生絕緣擊穿所引起的。
一般而言,電機(jī)可在相對(duì)較長(zhǎng)的時(shí)間內(nèi)(毫秒到秒,具體取決于 電機(jī)尺寸和類型)吸收極高的電流;然而,IGBT——工業(yè)電機(jī)驅(qū) 動(dòng)逆變器級(jí)的主要部分——短路耐受時(shí)間為微秒級(jí)。
IGBT短路耐受能力
IGBT短路耐受時(shí)間與其跨導(dǎo)或增益以及IGBT芯片熱容量有關(guān)。更 高的增益導(dǎo)致IGBT內(nèi)的短路電流更高,因此顯然增益較低的IGBT 具有較低的短路電平。然而,較高增益同樣會(huì)導(dǎo)致較低的通態(tài) 導(dǎo)通損耗,因而必須作出權(quán)衡取舍。1 IGBT技術(shù)的發(fā)展正在促成增 加短路電流電平,但降低短路耐受時(shí)間這一趨勢(shì)。此外,技術(shù) 的進(jìn)步導(dǎo)致使用芯片尺寸更小,2 縮小了模塊尺寸,但降低了熱 容量,以至耐受時(shí)間進(jìn)一步縮短。另外,還與IGBT集電極-發(fā)射 極電壓有很大關(guān)系,因而工業(yè)驅(qū)動(dòng)趨向更高直流總線電壓電平 的并行趨勢(shì)進(jìn)一步縮減了短路耐受時(shí)間。過去,這一時(shí)間范圍 是10 μs,但近年來(lái)的趨勢(shì)是在往5 μs3 以及某些條件下低至1 μs方 向發(fā)展。4 此外,不同器件的短路耐受時(shí)間也有較大的不同,因 此對(duì)于IGBT保護(hù)電路而言,通常建議內(nèi)建多于額定短路耐受時(shí) 間的額外裕量。
IGBT過流保護(hù)
無(wú)論出于財(cái)產(chǎn)損失還是安全方面的考量,針對(duì)過流條件的IGBT 保護(hù)都是系統(tǒng)可靠性的關(guān)鍵所在。IGBT并非是一種故障安全元 件,它們?nèi)舫霈F(xiàn)故障則可能導(dǎo)致直流總線電容爆炸,并使整個(gè)驅(qū)動(dòng)出現(xiàn)故障。5 過流保護(hù)一般通過電流測(cè)量或去飽和檢測(cè)來(lái)實(shí) 現(xiàn)。圖2顯示了這些技巧。對(duì)于電流測(cè)量而言,逆變器臂和相位 輸出都需要諸如分流電阻等測(cè)量器件,以便應(yīng)付直通故障和電 機(jī)繞組故障??刂破骱?或柵極驅(qū)動(dòng)器中的快速執(zhí)行跳變電路必 須及時(shí)關(guān)斷IGBT,防止超出短路耐受時(shí)間。這種方法的最大好 處是它要求在每個(gè)逆變器臂上各配備兩個(gè)測(cè)量器件,并配備一 切相關(guān)的信號(hào)調(diào)理和隔離電路。只需在正直流總線線路和負(fù)直 流總線線路上添加分流電阻即可緩解這種情況。然而,在很多 情況下,驅(qū)動(dòng)架構(gòu)中要么存在臂分流電阻,要么存在相位分流 電阻,以便為電流控制環(huán)路服務(wù),并提供電機(jī)過流保護(hù);它們 同樣可能用于IGBT過流保護(hù)——前提是信號(hào)調(diào)理的響應(yīng)時(shí)間足 夠快,可以在要求的短路耐受時(shí)間內(nèi)保護(hù)IGBT。
圖2. IGBT過流保護(hù)技術(shù)示例
去飽和檢測(cè)利用IGBT本身作為電流測(cè)量元件。原理圖中的二極 管確保IGBT集電極-發(fā)射極電壓在導(dǎo)通期間僅受到檢測(cè)電路的監(jiān) 控;正常工作時(shí),集電極-發(fā)射極電壓非常低(典型值為1 V至4 V)。 然而,如果發(fā)生短路事件,IGBT集電極電流上升到驅(qū)動(dòng)IGBT退出 飽和區(qū)并進(jìn)入線性工作區(qū)的電平。這導(dǎo)致集電極-發(fā)射極電壓快 速升高。上述正常電壓電平可用來(lái)表示存在短路,而去飽和跳 變閾值電平通常在7 V至9 V區(qū)域內(nèi)。重要的是,去飽和還可表示 柵極-發(fā)射極電壓過低,且IGBT未完全驅(qū)動(dòng)至飽和區(qū)。進(jìn)行去飽 和檢測(cè)部署時(shí)需仔細(xì),以防誤觸發(fā)。這尤其可能發(fā)生在IGBT尚 未完全進(jìn)入飽和狀態(tài)時(shí),從IGBT關(guān)斷狀態(tài)轉(zhuǎn)換到IGBT導(dǎo)通狀態(tài)期 間。消隱時(shí)間通常在開啟信號(hào)和去飽和檢測(cè)激活時(shí)刻之間,以 避免誤檢。通常還會(huì)加入電流源充電電容或RC濾波器,以便在 檢測(cè)機(jī)制中產(chǎn)生短暫的時(shí)間常數(shù),過濾噪聲拾取導(dǎo)致的濾波器 雜散跳變。選擇這些濾波器元件時(shí),需在噪聲抗擾度和IGBT短 路耐受時(shí)間內(nèi)作出反應(yīng)這兩者之間進(jìn)行權(quán)衡。