AD(模數(shù)轉(zhuǎn)換)采樣原理,類型詳細介紹
ADC包括三個基本功能:抽樣、量化和編碼。抽樣過程是將模擬信號在時間上離散化,使之成為抽樣信號;量化是將抽樣信號的幅度離散化使之成為數(shù)字信號;而編碼則是將數(shù)字信號轉(zhuǎn)換成數(shù)字系統(tǒng)所能接受的形式。如何實現(xiàn)這三個功能就決定了ADC的形式和性能。同時,ADC的分辨率越高,需要的轉(zhuǎn)換時間就越長,轉(zhuǎn)換速度就越低,故ADC的分辨率和轉(zhuǎn)換速率兩者總是相互制約的。所以在發(fā)展高分辨率ADC的同時要兼顧高速,在發(fā)展高速ADC的同時也要兼顧高分辨率,在此基礎(chǔ)上還要考慮功耗、體積、便捷性、多功能、與計算機及通訊網(wǎng)絡(luò)的兼容性以及應(yīng)用領(lǐng)域的特殊要求等問題,這樣也使得ADC的結(jié)構(gòu)和分類錯綜復雜。
ADC具有不同的轉(zhuǎn)換速率,使用不同的接口電路,并可提供不同的精確度。最常用的ADC類型包括閃速ADC、逐次逼近ADC和sigma-delta ADC。
1
閃速ADC
閃速ADC是轉(zhuǎn)換速率最快的一類。閃速ADC在每個電壓階躍中使用一個比較器和一組電阻。因此4位ADC具有16個比較器,8位ADC則具有256個比較器。所有的比較器輸出連接到一塊邏輯器件上,該邏輯器件根據(jù)比較器的電壓高低確定輸出。
閃速ADC的轉(zhuǎn)換速率是比較器延遲和邏輯器件延遲(邏輯器件的延遲通常可以忽略不計)之和。閃速ADC的轉(zhuǎn)換速率很快,但需要占據(jù)巨大的空間;而且由于所需的比較器數(shù)目很大,閃速ADC簡直就是功率“黑洞”,需要消耗很高的電流強度。10位閃速ADC所需的電流約為0.5A。
閃速ADC的一種變形就是半閃速ADC,該ADC利用內(nèi)置的數(shù)模轉(zhuǎn)換器(DAC)減少了內(nèi)部比較器的數(shù)目。半閃速轉(zhuǎn)換器的轉(zhuǎn)換速率低于真正的閃速轉(zhuǎn)換器,但高于其它類型的ADC。
2
逐次逼近ADC
逐次逼近轉(zhuǎn)換器采用一個比較器和計數(shù)邏輯器件完成轉(zhuǎn)換。轉(zhuǎn)換的第一步是檢驗輸入是否高于參考電壓的一半,如果高于,將輸出的最高有效位(MSB)置為1。然后輸入值減去輸出參考電壓的一半,再檢驗得到的結(jié)果是否大于參考電壓的1/4,依此類推直至所有的輸出位均置“1”或清零。逐次逼近ADC所需的時鐘周期與執(zhí)行轉(zhuǎn)換所需的輸出位數(shù)相同。
3
Sigma-delta ADC
Sigma-delta ADC采用1位DAC、濾波和附加采樣來實現(xiàn)非常精確的轉(zhuǎn)換,轉(zhuǎn)換精度取決于參考輸入和輸入時鐘頻率。
Sigma-delta轉(zhuǎn)換器的主要優(yōu)勢在于其較高的分辨率。閃速和逐次逼近ADC采用并聯(lián)電阻或串聯(lián)電阻,這些方法的問題在于電阻的精確度將直接影響轉(zhuǎn)換結(jié)果的精確度。盡管新式ADC采用非常精確的激光微調(diào)電阻網(wǎng)絡(luò),但在電阻并聯(lián)中仍然不甚精確。sigma-delta轉(zhuǎn)換器中不存在電阻并聯(lián),但通過若干次采樣可得到收斂的結(jié)果。
Sigma-delta轉(zhuǎn)換器的主要劣勢在于其轉(zhuǎn)換速率。由于該轉(zhuǎn)換器的工作機理是對輸入進行附加采樣,因此轉(zhuǎn)換需要耗費更多的時鐘周期。在給定的時鐘速率條件下,Sigma-delta轉(zhuǎn)換器的速率低于其它類型的轉(zhuǎn)換器;或從另一角度而言,對于給定的轉(zhuǎn)換速率,Sigma-delta轉(zhuǎn)換器需要更高的時鐘頻率。
Sigma-delta轉(zhuǎn)換器的另一劣勢在于將占空(duty cycle)信息轉(zhuǎn)換為數(shù)字輸出字的數(shù)字濾波器的結(jié)構(gòu)很復雜,但Sigma-delta轉(zhuǎn)換器因其具有在IC裸片上添加數(shù)字濾波器或DSP的功能而日益得到廣泛應(yīng)用。
免責聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺僅提供信息存儲服務(wù)。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!