顛覆認(rèn)知——Redis會(huì)遇到的15個(gè)「坑」,你踩過幾個(gè)?
閱讀本文大約需要 20 分鐘。
大家好,我是 Kaito。
這篇文章,我想和你聊一聊在使用 Redis 時(shí),可能會(huì)踩到的「坑」。
如果你在使用 Redis 時(shí),也遇到過以下這些「詭異」的場景,那很大概率是踩到「坑」了:
-
明明一個(gè) key 設(shè)置了過期時(shí)間,怎么變成不過期了? -
使用 O(1) 復(fù)雜度的 SETBIT 命令,Redis 竟然被 OOM 了? -
執(zhí)行 RANDOMKEY 隨機(jī)拿出一個(gè) key,竟然也會(huì)阻塞 Redis? -
同樣的命令,為什么主庫查不到數(shù)據(jù),從庫卻可以查到? -
從庫內(nèi)存為什么比主庫用得還多? -
寫入到 Redis 的數(shù)據(jù),為什么莫名其妙丟了? -
...
究竟是什么原因,導(dǎo)致的這些問題呢?
這篇文章,我就來和你盤點(diǎn)一下,使用 Redis 時(shí)可能會(huì)踩到「坑」,以及如何去規(guī)避。
我把這些問題劃分成了三大部分:
-
常見命令有哪些坑? -
數(shù)據(jù)持久化有哪些坑? -
主從庫同步有哪些坑?
導(dǎo)致這些問題的原因,很有可能會(huì)「顛覆」你的認(rèn)知,如果你準(zhǔn)備好了,那就跟著我的思路開始吧!
這篇文章干貨很多,希望你可以耐心讀完。
常見命令有哪些坑?
首先,我們來看一下,平時(shí)在使用 Redis 時(shí),有哪些常見的命令會(huì)遇到「意料之外」的結(jié)果。
1) 過期時(shí)間意外丟失?
你在使用 Redis 時(shí),肯定經(jīng)常使用 SET 命令,它非常簡單。
SET 除了可以設(shè)置 key-value 之外,還可以設(shè)置 key 的過期時(shí)間,就像下面這樣:
127.0.0.1:6379> SET testkey val1 EX 60 OK 127.0.0.1:6379> TTL testkey (integer) 59
此時(shí)如果你想修改 key 的值,但只是單純地使用 SET 命令,而沒有加上「過期時(shí)間」的參數(shù),那這個(gè) key 的過期時(shí)間將會(huì)被「擦除」。
127.0.0.1:6379> SET testkey val2 OK 127.0.0.1:6379> TTL testkey // key永遠(yuǎn)不過期了! (integer) -1
看到了么?testkey 變成永遠(yuǎn)不過期了!
如果你剛剛開始使用 Redis,相信你肯定也踩過這個(gè)坑。
導(dǎo)致這個(gè)問題的原因在于:SET 命令如果不設(shè)置過期時(shí)間,那么 Redis 會(huì)自動(dòng)「擦除」這個(gè) key 的過期時(shí)間。
如果你發(fā)現(xiàn) Redis 的內(nèi)存持續(xù)增長,而且很多 key 原來設(shè)置了過期時(shí)間,后來發(fā)現(xiàn)過期時(shí)間丟失了,很有可能是因?yàn)檫@個(gè)原因?qū)е碌摹?/span>
這時(shí)你的 Redis 中就會(huì)存在大量不過期的 key,消耗過多的內(nèi)存資源。
所以,你在使用 SET 命令時(shí),如果剛開始就設(shè)置了過期時(shí)間,那么之后修改這個(gè) key,也務(wù)必要加上過期時(shí)間的參數(shù),避免過期時(shí)間丟失問題。
2) DEL 竟然也會(huì)阻塞 Redis?
刪除一個(gè) key,你肯定會(huì)用 DEL 命令,不知道你沒有思考過它的時(shí)間復(fù)雜度是多少?
O(1)?其實(shí)不一定。
如果你有認(rèn)真閱讀 Redis 的官方文檔,就會(huì)發(fā)現(xiàn):刪除一個(gè) key 的耗時(shí),與這個(gè) key 的類型有關(guān)。
Redis 官方文檔在介紹 DEL 命令時(shí),是這樣描述的:
-
key 是 String 類型,DEL 時(shí)間復(fù)雜度是 O(1) -
key 是 List/Hash/Set/ZSet 類型,DEL 時(shí)間復(fù)雜度是 O(M),M 為元素?cái)?shù)量
也就是說,如果你要?jiǎng)h除的是一個(gè)非 String 類型的 key,這個(gè) key 的元素越多,那么在執(zhí)行 DEL 時(shí)耗時(shí)就越久!
為什么會(huì)這樣?
原因在于,刪除這種 key 時(shí),Redis 需要依次釋放每個(gè)元素的內(nèi)存,元素越多,這個(gè)過程就會(huì)越耗時(shí)。
而這么長的操作耗時(shí),勢必會(huì)阻塞整個(gè) Redis 實(shí)例,影響 Redis 的性能。
所以,當(dāng)你在刪除 List/Hash/Set/ZSet 類型的 key 時(shí),一定要格外注意,不能無腦執(zhí)行 DEL,而是應(yīng)該用以下方式刪除:
-
查詢元素?cái)?shù)量:執(zhí)行 LLEN/HLEN/SCARD/ZCARD 命令 -
判斷元素?cái)?shù)量:如果元素?cái)?shù)量較少,可直接執(zhí)行 DEL 刪除,否則分批刪除 -
分批刪除:執(zhí)行 LRANGE/HSCAN/SSCAN/ZSCAN + LPOP/RPOP/HDEL/SREM/ZREM 刪除
了解了 DEL 對于 List/Hash/Set/ZSet 類型數(shù)據(jù)的影響,我們再來分析下,刪除一個(gè) String 類型的 key 會(huì)不會(huì)有這種問題?
???前面不是提到,Redis 官方文檔的描述,刪除 String 類型的 key,時(shí)間復(fù)雜度是 O(1) 么?這不會(huì)導(dǎo)致 Redis 阻塞吧?
其實(shí)這也不一定!
你思考一下,如果這個(gè) key 占用的內(nèi)存非常大呢?
例如,這個(gè) key 存儲(chǔ)了 500MB 的數(shù)據(jù)(很明顯,它是一個(gè) bigkey),那在執(zhí)行 DEL 時(shí),耗時(shí)依舊會(huì)變長!
這是因?yàn)?,Redis 釋放這么大的內(nèi)存給操作系統(tǒng),也是需要時(shí)間的,所以操作耗時(shí)也會(huì)變長。
所以,對于 String 類型來說,你最好也不要存儲(chǔ)過大的數(shù)據(jù),否則在刪除它時(shí),也會(huì)有性能問題。
此時(shí),你可能會(huì)想:Redis 4.0 不是推出了 lazy-free 機(jī)制么?打開這個(gè)機(jī)制,釋放內(nèi)存的操作會(huì)放到后臺(tái)線程中執(zhí)行,那是不是就不會(huì)阻塞主線程了?
這個(gè)問題非常好。
真的會(huì)是這樣嗎?
這里我先告訴你結(jié)論:即使 Redis 打開了 lazy-free,在刪除一個(gè) String 類型的 bigkey 時(shí),它仍舊是在主線程中處理,而不是放到后臺(tái)線程中執(zhí)行。所以,依舊有阻塞 Redis 的風(fēng)險(xiǎn)!
這是為什么?
這里先賣一個(gè)關(guān)子,感興趣的同學(xué)可以先自行查閱 lazy-free 相關(guān)資料尋找答案。:)
其實(shí),關(guān)于 lazy-free 的知識(shí)點(diǎn)也很多,由于篇幅原因,所以我打算后面專門寫一篇文章來講,歡迎持續(xù)關(guān)注~
3) RANDOMKEY 竟然也會(huì)阻塞 Redis?
如果你想隨機(jī)查看 Redis 中的一個(gè) key,通常會(huì)使用 RANDOMKEY 這個(gè)命令。
這個(gè)命令會(huì)從 Redis 中「隨機(jī)」取出一個(gè) key。
既然是隨機(jī),那這個(gè)執(zhí)行速度肯定非??彀桑?/span>
其實(shí)不然。
要解釋清楚這個(gè)問題,就要結(jié)合 Redis 的過期策略來講。
如果你對 Redis 的過期策略有所了解,應(yīng)該知道 Redis 清理過期 key,是采用定時(shí)清理 + 懶惰清理 2 種方式結(jié)合來做的。
而 RANDOMKEY 在隨機(jī)拿出一個(gè) key 后,首先會(huì)先檢查這個(gè) key 是否已過期。
如果該 key 已經(jīng)過期,那么 Redis 會(huì)刪除它,這個(gè)過程就是懶惰清理。
但清理完了還不能結(jié)束,Redis 還要找出一個(gè)「不過期」的 key,返回給客戶端。
此時(shí),Redis 則會(huì)繼續(xù)隨機(jī)拿出一個(gè) key,然后再判斷是它否過期,直到找出一個(gè)未過期的 key 返回給客戶端。
整個(gè)流程就是這樣的:
-
master 隨機(jī)取出一個(gè) key,判斷是否已過期 -
如果 key 已過期,刪除它,繼續(xù)隨機(jī)取 key -
以此循環(huán)往復(fù),直到找到一個(gè)不過期的 key,返回
但這里就有一個(gè)問題了:如果此時(shí) Redis 中,有大量 key 已經(jīng)過期,但還未來得及被清理掉,那這個(gè)循環(huán)就會(huì)持續(xù)很久才能結(jié)束,而且,這個(gè)耗時(shí)都花費(fèi)在了清理過期 key + 尋找不過期 key 上。
導(dǎo)致的結(jié)果就是,RANDOMKEY 執(zhí)行耗時(shí)變長,影響 Redis 性能。
以上流程,其實(shí)是在 master 上執(zhí)行的。
如果在 slave 上執(zhí)行 RANDOMEKY,那么問題會(huì)更嚴(yán)重!
為什么?
主要原因就在于,slave 自己是不會(huì)清理過期 key。
那 slave 什么時(shí)候刪除過期 key 呢?
其實(shí),當(dāng)一個(gè) key 要過期時(shí),master 會(huì)先清理刪除它,之后 master 向 slave 發(fā)送一個(gè) DEL 命令,告知 slave 也刪除這個(gè) key,以此達(dá)到主從庫的數(shù)據(jù)一致性。
還是同樣的場景:Redis 中存在大量已過期,但還未被清理的 key,那在 slave 上執(zhí)行 RANDOMKEY 時(shí),就會(huì)發(fā)生以下問題:
-
slave 隨機(jī)取出一個(gè) key,判斷是否已過期 -
key 已過期,但 slave 不會(huì)刪除它,而是繼續(xù)隨機(jī)尋找不過期的 key -
由于大量 key 都已過期,那 slave 就會(huì)尋找不到符合條件的 key,此時(shí)就會(huì)陷入「 死循環(huán)」!
也就是說,在 slave 上執(zhí)行 RANDOMKEY,有可能會(huì)造成整個(gè) Redis 實(shí)例卡死!
是不是沒想到?在 slave 上隨機(jī)拿一個(gè) key,竟然有可能造成這么嚴(yán)重的后果?
這其實(shí)是 Redis 的一個(gè) Bug,這個(gè) Bug 一直持續(xù)到 5.0 才被修復(fù)。
修復(fù)的解決方案是,在 slave 上執(zhí)行 RANDOMKEY 時(shí),會(huì)先判斷整個(gè)實(shí)例所有 key 是否都設(shè)置了過期時(shí)間,如果是,為了避免長時(shí)間找不到符合條件的 key,slave 最多只會(huì)在哈希表中尋找 100 次,無論是否能找到,都會(huì)退出循環(huán)。
這個(gè)方案就是增加上了一個(gè)最大重試次數(shù),這樣一來,就避免了陷入死循環(huán)。
雖然這個(gè)方案可以避免了 slave 陷入死循環(huán)、卡死整個(gè)實(shí)例的問題,但是,在 master 上執(zhí)行這個(gè)命令時(shí),依舊有概率導(dǎo)致耗時(shí)變長。
所以,你在使用 RANDOMKEY 時(shí),如果發(fā)現(xiàn) Redis 發(fā)生了「抖動(dòng)」,很有可能是因?yàn)檫@個(gè)原因?qū)е碌模?/span>
4) O(1) 復(fù)雜度的 SETBIT,竟然會(huì)導(dǎo)致 Redis OOM?
在使用 Redis 的 String 類型時(shí),除了直接寫入一個(gè)字符串之外,還可以把它當(dāng)做 bitmap 來用。
具體來講就是,我們可以把一個(gè) String 類型的 key,拆分成一個(gè)個(gè) bit 來操作,就像下面這樣:
127.0.0.1:6379> SETBIT testkey 10 1 (integer) 1 127.0.0.1:6379> GETBIT testkey 10 (integer) 1
其中,操作的每一個(gè) bit 位叫做 offset。
但是,這里有一個(gè)坑,你需要注意起來。
如果這個(gè) key 不存在,或者 key 的內(nèi)存使用很小,此時(shí)你要操作的 offset 非常大,那么 Redis 就需要分配「更大的內(nèi)存空間」,這個(gè)操作耗時(shí)就會(huì)變長,影響性能。
所以,當(dāng)你在使用 SETBIT 時(shí),也一定要注意 offset 的大小,操作過大的 offset 也會(huì)引發(fā) Redis 卡頓。
這種類型的 key,也是典型的 bigkey,除了分配內(nèi)存影響性能之外,在刪除它時(shí),耗時(shí)同樣也會(huì)變長。
5) 執(zhí)行 MONITOR 也會(huì)導(dǎo)致 Redis OOM?
這個(gè)坑你肯定聽說過很多次了。
當(dāng)你在執(zhí)行 MONITOR 命令時(shí),Redis 會(huì)把每一條命令寫到客戶端的「輸出緩沖區(qū)」中,然后客戶端從這個(gè)緩沖區(qū)讀取服務(wù)端返回的結(jié)果。
但是,如果你的 Redis QPS 很高,這將會(huì)導(dǎo)致這個(gè)輸出緩沖區(qū)內(nèi)存持續(xù)增長,占用 Redis 大量的內(nèi)存資源,如果恰好你的機(jī)器的內(nèi)存資源不足,那 Redis 實(shí)例就會(huì)面臨被 OOM 的風(fēng)險(xiǎn)。
所以,你需要謹(jǐn)慎使用 MONITOR,尤其在 QPS 很高的情況下。
以上這些問題場景,都是我們在使用常見命令時(shí)發(fā)生的,而且,很可能都是「無意」就會(huì)觸發(fā)的。
下面我們來看 Redis「數(shù)據(jù)持久化」都存在哪些坑?
數(shù)據(jù)持久化有哪些坑?
Redis 的數(shù)據(jù)持久化,分為 RDB 和 AOF 兩種方式。
其中,RDB 是數(shù)據(jù)快照,而 AOF 會(huì)記錄每一個(gè)寫命令到日志文件中。
在數(shù)據(jù)持久化方面發(fā)生問題,主要也集中在這兩大塊,我們依次來看。
1) master 宕機(jī),slave 數(shù)據(jù)也丟失了?
如果你的 Redis 采用如下模式部署,就會(huì)發(fā)生數(shù)據(jù)丟失的問題:
-
master-slave + 哨兵部署實(shí)例 -
master 沒有開啟數(shù)據(jù)持久化功能 -
Redis 進(jìn)程使用 supervisor 管理,并配置為「進(jìn)程宕機(jī),自動(dòng)重啟」
如果此時(shí) master 宕機(jī),就會(huì)導(dǎo)致下面的問題:
-
master 宕機(jī),哨兵還未發(fā)起切換,此時(shí) master 進(jìn)程立即被 supervisor 自動(dòng)拉起 -
但 master 沒有開啟任何數(shù)據(jù)持久化,啟動(dòng)后是一個(gè)「空」實(shí)例 -
此時(shí) slave 為了與 master 保持一致,它會(huì)自動(dòng)「清空」實(shí)例中的所有數(shù)據(jù),slave 也變成了一個(gè)「空」實(shí)例
看到了么?在這個(gè)場景下,master / slave 的數(shù)據(jù)就全部丟失了。
這時(shí),業(yè)務(wù)應(yīng)用在訪問 Redis 時(shí),發(fā)現(xiàn)緩存中沒有任何數(shù)據(jù),就會(huì)把請求全部打到后端數(shù)據(jù)庫上,這還會(huì)進(jìn)一步引發(fā)「緩存雪崩」,對業(yè)務(wù)影響非常大。
所以,你一定要避免這種情況發(fā)生,我給你的建議是:
-
Redis 實(shí)例不使用進(jìn)程管理工具自動(dòng)拉起 -
master 宕機(jī)后,讓哨兵發(fā)起切換,把 slave 提升為 master -
切換完成后,再重啟 master,讓其退化成 slave
你在配置數(shù)據(jù)持久化時(shí),要避免這個(gè)問題的發(fā)生。
2) AOF everysec 真的不會(huì)阻塞主線程嗎?
當(dāng) Redis 開啟 AOF 時(shí),需要配置 AOF 的刷盤策略。
基于性能和數(shù)據(jù)安全的平衡,你肯定會(huì)采用 appendfsync everysec 這種方案。
這種方案的工作模式為,Redis 的后臺(tái)線程每間隔 1 秒,就把 AOF page cache 的數(shù)據(jù),刷到磁盤(fsync)上。
這種方案的優(yōu)勢在于,把 AOF 刷盤的耗時(shí)操作,放到了后臺(tái)線程中去執(zhí)行,避免了對主線程的影響。
但真的不會(huì)影響主線程嗎?
答案是否定的。
其實(shí)存在這樣一種場景:Redis 后臺(tái)線程在執(zhí)行 AOF page cache 刷盤(fysnc)時(shí),如果此時(shí)磁盤 IO 負(fù)載過高,那么調(diào)用 fsync 就會(huì)被阻塞住。
此時(shí),主線程仍然接收寫請求進(jìn)來,那么此時(shí)的主線程會(huì)先判斷,上一次后臺(tái)線程是否已刷盤成功。
如何判斷呢?
后臺(tái)線程在刷盤成功后,都會(huì)記錄刷盤的時(shí)間。
主線程會(huì)根據(jù)這個(gè)時(shí)間來判斷,距離上一次刷盤已經(jīng)過去多久了。整個(gè)流程是這樣的:
-
主線程在寫 AOF page cache(write系統(tǒng)調(diào)用)前,先檢查后臺(tái) fsync 是否已完成? -
fsync 已完成,主線程直接寫 AOF page cache -
fsync 未完成,則檢查距離上次 fsync 過去多久? -
如果距離上次 fysnc 成功在 2 秒內(nèi),那么主線程會(huì)直接返回,不寫 AOF page cache -
如果距離上次 fysnc 成功超過了 2 秒,那主線程會(huì)強(qiáng)制寫 AOF page cache(write系統(tǒng)調(diào)用) -
由于磁盤 IO 負(fù)載過高,此時(shí),后臺(tái)線程 fynsc 會(huì)發(fā)生阻塞,那主線程在寫 AOF page cache 時(shí),也會(huì)發(fā)生阻塞等待(操作同一個(gè) fd,fsync 和 write 是互斥的,一方必須等另一方成功才可以繼續(xù)執(zhí)行,否則阻塞等待)
通過分析我們可以發(fā)現(xiàn),即使你配置的 AOF 刷盤策略是 appendfsync everysec,也依舊會(huì)有阻塞主線程的風(fēng)險(xiǎn)。
其實(shí),產(chǎn)生這個(gè)問題的重點(diǎn)在于,磁盤 IO 負(fù)載過高導(dǎo)致 fynsc 阻塞,進(jìn)而導(dǎo)致主線程寫 AOF page cache 也發(fā)生阻塞。
所以,你一定要保證磁盤有充足的 IO 資源,避免這個(gè)問題。
3) AOF everysec 真的只會(huì)丟失 1 秒數(shù)據(jù)?
接著上面的問題繼續(xù)分析。
如上所述,這里我們需要重點(diǎn)關(guān)注上面的步驟 4。
也就是:主線程在寫 AOF page cache 時(shí),會(huì)先判斷上一次 fsync 成功的時(shí)間,如果距離上次 fysnc 成功在 2 秒內(nèi),那么主線程會(huì)直接返回,不再寫 AOF page cache。
這就意味著,后臺(tái)線程在執(zhí)行 fsync 刷盤時(shí),主線程最多等待 2 秒不會(huì)寫 AOF page cache。
如果此時(shí) Redis 發(fā)生了宕機(jī),那么,AOF 文件中丟失是 2 秒的數(shù)據(jù),而不是 1 秒!
我們繼續(xù)分析,Redis 主線程為什么要等待 2 秒不寫 AOF page cache 呢?
其實(shí),Redis AOF 配置為 appendfsync everysec 時(shí),正常來講,后臺(tái)線程每隔 1 秒執(zhí)行一次 fsync 刷盤,如果磁盤資源充足,是不會(huì)被阻塞住的。
也就是說,Redis 主線程其實(shí)根本不用關(guān)心后臺(tái)線程是否刷盤成功,只要無腦寫 AOF page cache 即可。
但是,Redis 作者考慮到,如果此時(shí)的磁盤 IO 資源比較緊張,那么后臺(tái)線程 fsync 就有概率發(fā)生阻塞風(fēng)險(xiǎn)。
所以,Redis 作者在主線程寫 AOF page cache 之前,先檢查一下距離上一次 fsync 成功的時(shí)間,如果大于 1 秒沒有成功,那么主線程此時(shí)就能知道,fsync 可能阻塞了。
所以,主線程會(huì)等待 2 秒不寫 AOF page cache,其目的在于:
-
降低主線程阻塞的風(fēng)險(xiǎn)(如果無腦寫 AOF page cache,主線程則會(huì)立即阻塞?。?/span> -
如果 fsync 阻塞,主線程就會(huì)給后臺(tái)線程留出 1 秒的時(shí)間,等待 fsync 成功
但代價(jià)就是,如果此時(shí)發(fā)生宕機(jī),AOF 丟失的就是 2 秒的數(shù)據(jù),而不是 1 秒。
這個(gè)方案應(yīng)該是 Redis 作者對性能和數(shù)據(jù)安全性的進(jìn)一步權(quán)衡。
無論如何,這里你只需要知道的是,即使 AOF 配置為每秒刷盤,在發(fā)生上述極端情況時(shí),AOF 丟失的數(shù)據(jù)其實(shí)是 2 秒。
4) RDB 和 AOF rewrite 時(shí),Redis 發(fā)生 OOM?
最后,我們來看一下,當(dāng) Redis 在執(zhí)行 RDB 快照和 AOF rewrite 時(shí),會(huì)發(fā)生的問題。
Redis 在做 RDB 快照和 AOF rewrite 時(shí),會(huì)采用創(chuàng)建子進(jìn)程的方式,把實(shí)例中的數(shù)據(jù)持久化到磁盤上。
創(chuàng)建子進(jìn)程,會(huì)調(diào)用操作系統(tǒng)的 fork 函數(shù)。
fork 執(zhí)行完成后,父進(jìn)程和子進(jìn)程會(huì)同時(shí)共享同一份內(nèi)存數(shù)據(jù)。
但此時(shí)的主進(jìn)程依舊是可以接收寫請求的,而進(jìn)來的寫請求,會(huì)采用 Copy On Write(寫時(shí)復(fù)制)的方式操作內(nèi)存數(shù)據(jù)。
也就是說,主進(jìn)程一旦有數(shù)據(jù)需要修改,Redis 并不會(huì)直接修改現(xiàn)有內(nèi)存中的數(shù)據(jù),而是先將這塊內(nèi)存數(shù)據(jù)拷貝出來,再修改這塊新內(nèi)存的數(shù)據(jù),這就是所謂的「寫時(shí)復(fù)制」。
寫時(shí)復(fù)制你也可以理解成,誰需要發(fā)生寫操作,誰就先拷貝,再修改。
你應(yīng)該發(fā)現(xiàn)了,如果父進(jìn)程要修改一個(gè) key,就需要拷貝原有的內(nèi)存數(shù)據(jù),到新內(nèi)存中,這個(gè)過程涉及到了「新內(nèi)存」的申請。
如果你的業(yè)務(wù)特點(diǎn)是「寫多讀少」,而且 OPS 非常高,那在 RDB 和 AOF rewrite 期間,就會(huì)產(chǎn)生大量的內(nèi)存拷貝工作。
這會(huì)有什么問題呢?
因?yàn)閷懻埱蠛芏啵@會(huì)導(dǎo)致 Redis 父進(jìn)程會(huì)申請非常多的內(nèi)存。在這期間,修改 key 的范圍越廣,新內(nèi)存的申請就越多。
如果你的機(jī)器內(nèi)存資源不足,這就會(huì)導(dǎo)致 Redis 面臨被 OOM 的風(fēng)險(xiǎn)!
這就是你會(huì)從 DBA 同學(xué)那里聽到的,要給 Redis 機(jī)器預(yù)留內(nèi)存的原因。
其目的就是避免在 RDB 和 AOF rewrite 期間,防止 Redis OOM。
以上這些,就是「數(shù)據(jù)持久化」會(huì)遇到的坑,你踩到過幾個(gè)?
下面我們再來看「主從復(fù)制」會(huì)存在哪些問題。
主從復(fù)制有哪些坑?
Redis 為了保證高可用,提供了主從復(fù)制的方式,這樣就可以保證 Redis 有多個(gè)「副本」,當(dāng)主庫宕機(jī)后,我們依舊有從庫可以使用。
在主從同步期間,依舊存在很多坑,我們依次來看。
1) 主從復(fù)制會(huì)丟數(shù)據(jù)嗎?
首先,你需要知道,Redis 的主從復(fù)制是采用「異步」的方式進(jìn)行的。
這就意味著,如果 master 突然宕機(jī),可能存在有部分?jǐn)?shù)據(jù)還未同步到 slave 的情況發(fā)生。
這會(huì)導(dǎo)致什么問題呢?
如果你把 Redis 當(dāng)做純緩存來使用,那對業(yè)務(wù)來說沒有什么影響。
master 未同步到 slave 的數(shù)據(jù),業(yè)務(wù)應(yīng)用可以從后端數(shù)據(jù)庫中重新查詢到。
但是,對于把 Redis 當(dāng)做數(shù)據(jù)庫,或是當(dāng)做分布式鎖來使用的業(yè)務(wù),有可能因?yàn)楫惒綇?fù)制的問題,導(dǎo)致數(shù)據(jù)丟失 / 鎖丟失。
關(guān)于 Redis 分布式鎖可靠性的更多細(xì)節(jié),這里先不展開,后面會(huì)單獨(dú)寫一篇文章詳細(xì)剖析這個(gè)知識(shí)點(diǎn)。這里你只需要先知道,Redis 主從復(fù)制是有概率發(fā)生數(shù)據(jù)丟失的。
2) 同樣命令查詢一個(gè) key,主從庫卻返回不同的結(jié)果?
不知道你是否思考過這樣一個(gè)問題:如果一個(gè) key 已過期,但這個(gè) key 還未被 master 清理,此時(shí)在 slave 上查詢這個(gè) key,會(huì)返回什么結(jié)果呢?
-
slave 正常返回 key 的值 -
slave 返回 NULL
你認(rèn)為是哪一種?可以思考一下。
答案是:不一定。
嗯?為什么會(huì)不一定?
這個(gè)問題非常有意思,請跟緊我的思路,我會(huì)帶你一步步分析其中的原因。
其實(shí),返回什么結(jié)果,這要取決于以下 3 個(gè)因素:
-
Redis 的版本 -
具體執(zhí)行的命令 -
機(jī)器時(shí)鐘
先來看 Redis 版本。
如果你使用的是 Redis 3.2 以下版本,只要這個(gè) key 還未被 master 清理,那么,在 slave 上查詢這個(gè) key,它會(huì)永遠(yuǎn)返回 value 給你。
也就是說,即使這個(gè) key 已過期,在 slave 上依舊可以查詢到這個(gè) key。
// Redis 2.8 版本 在 slave 上執(zhí)行 127.0.0.1:6479> TTL testkey (integer) -2 // 已過期 127.0.0.1:6479> GET testkey "testval" // 還能查詢到!
但如果此時(shí)在 master 上查詢這個(gè) key,發(fā)現(xiàn)已經(jīng)過期,就會(huì)把它清理掉,然后返回 NULL。
// Redis 2.8 版本 在 master 上執(zhí)行 127.0.0.1:6379> TTL testkey (integer) -2 127.0.0.1:6379> GET testkey (nil)
發(fā)現(xiàn)了嗎?在 master 和 slave 上查詢同一個(gè) key,結(jié)果竟然不一樣?
其實(shí),slave 應(yīng)該要與 master 保持一致,key 已過期,就應(yīng)該給客戶端返回 NULL,而不是還正常返回 key 的值。
為什么會(huì)發(fā)生這種情況?
其實(shí)這是 Redis 的一個(gè) Bug:3.2 以下版本的 Redis,在 slave 上查詢一個(gè) key 時(shí),并不會(huì)判斷這個(gè) key 是否已過期,而是直接無腦返回給客戶端結(jié)果。
這個(gè) Bug 在 3.2 版本進(jìn)行了修復(fù),但是,它修復(fù)得「不夠徹底」。
什么叫修復(fù)得「不夠徹底」?
這就要結(jié)合前面提到的,第 2 個(gè)影響因素「具體執(zhí)行的命令」來解釋了。
Redis 3.2 雖然修復(fù)了這個(gè) Bug,但卻遺漏了一個(gè)命令:EXISTS。
也就是說,一個(gè) key 已過期,在 slave 直接查詢它的數(shù)據(jù),例如執(zhí)行 GET/LRANGE/HGETALL/SMEMBERS/ZRANGE 這類命令時(shí),slave 會(huì)返回 NULL。
但如果執(zhí)行的是 EXISTS,slave 依舊會(huì)返回:key 還存在。
// Redis 3.2 版本 在 slave 上執(zhí)行 127.0.0.1:6479> GET testkey (nil) // key 已邏輯過期 127.0.0.1:6479> EXISTS testkey (integer) 1 // 還存在!
原因在于,EXISTS 與查詢數(shù)據(jù)的命令,使用的不是同一個(gè)方法。
Redis 作者只在查詢數(shù)據(jù)時(shí)增加了過期時(shí)間的校驗(yàn),但 EXISTS 命令依舊沒有這么做。
直到 Redis 4.0.11 這個(gè)版本,Redis 才真正把這個(gè)遺漏的 Bug 完全修復(fù)。
如果你使用的是這個(gè)之上的版本,那在 slave 上執(zhí)行數(shù)據(jù)查詢或 EXISTS,對于已過期的 key,就都會(huì)返回「不存在」了。
這里我們先小結(jié)一下,slave 查詢過期 key,經(jīng)歷了 3 個(gè)階段:
-
3.2 以下版本,key 過期未被清理,無論哪個(gè)命令,查詢 slave,均正常返回 value -
3.2 - 4.0.11 版本,查詢數(shù)據(jù)返回 NULL,但 EXISTS 依舊返回 true -
4.0.11 以上版本,所有命令均已修復(fù),過期 key 在 slave 上查詢,均返回「不存在」
這里要特別鳴謝《Redis開發(fā)與運(yùn)維》的作者,付磊。
這個(gè)問題我是在他的文章中看到的,感覺非常有趣,原來 Redis 之前還存在這樣的 Bug 。隨后我又查閱了相關(guān)源碼,并對邏輯進(jìn)行了梳理,在這里才寫成文章分享給大家。
雖然已在微信中親自答謝,但在這里再次表達(dá)對他的謝意~
最后,我們來看影響查詢結(jié)果的第 3 個(gè)因素:「機(jī)器時(shí)鐘」。
假設(shè)我們已規(guī)避了上面提到的版本 Bug,例如,我們使用 Redis 5.0 版本,在 slave 查詢一個(gè) key,還會(huì)和 master 結(jié)果不同嗎?
答案是,還是有可能會(huì)的。
這就與 master / slave 的機(jī)器時(shí)鐘有關(guān)了。
無論是 master 還是 slave,在判斷一個(gè) key 是否過期時(shí),都是基于「本機(jī)時(shí)鐘」來判斷的。
如果 slave 的機(jī)器時(shí)鐘比 master 走得「快」,那就會(huì)導(dǎo)致,即使這個(gè) key 還未過期,但以 slave 上視角來看,這個(gè) key 其實(shí)已經(jīng)過期了,那客戶端在 slave 上查詢時(shí),就會(huì)返回 NULL。
是不是很有意思?一個(gè)小小的過期 key,竟然藏匿這么多貓膩。
如果你也遇到了類似的情況,就可以通過上述步驟進(jìn)行排查,確認(rèn)是否踩到了這個(gè)坑。
3) 主從切換會(huì)導(dǎo)致緩存雪崩?
這個(gè)問題是上一個(gè)問題的延伸。
我們假設(shè),slave 的機(jī)器時(shí)鐘比 master 走得「快」,而且是「快很多」。
此時(shí),從 slave 角度來看,Redis 中的數(shù)據(jù)存在「大量過期」。
如果此時(shí)操作「主從切換」,把 slave 提升為新的 master。
它成為 master 后,就會(huì)開始大量清理過期 key,此時(shí)就會(huì)導(dǎo)致以下結(jié)果:
-
master 大量清理過期 key,主線程發(fā)生阻塞,無法及時(shí)處理客戶端請求 -
Redis 中數(shù)據(jù)大量過期,引發(fā)緩存雪崩
你看,當(dāng) master / slave 機(jī)器時(shí)鐘嚴(yán)重不一致時(shí),對業(yè)務(wù)的影響非常大!
所以,如果你是 DBA 運(yùn)維,一定要保證主從庫的機(jī)器時(shí)鐘一致性,避免發(fā)生這些問題。
4) master / slave 大量數(shù)據(jù)不一致?
還有一種場景,會(huì)導(dǎo)致 master / slave 的數(shù)據(jù)存在大量不一致。
這就涉及到 Redis 的 maxmemory 配置了。
Redis 的 maxmemory 可以控制整個(gè)實(shí)例的內(nèi)存使用上限,超過這個(gè)上限,并且配置了淘汰策略,那么實(shí)例就開始淘汰數(shù)據(jù)。
但這里有個(gè)問題:假設(shè) master / slave 配置的 maxmemory 不一樣,那此時(shí)就會(huì)發(fā)生數(shù)據(jù)不一致。
例如,master 配置的 maxmemory 為 5G,而 slave 的 maxmemory 為 3G,當(dāng) Redis 中的數(shù)據(jù)超過 3G 時(shí),slave 就會(huì)「提前」開始淘汰數(shù)據(jù),此時(shí)主從庫數(shù)據(jù)發(fā)生不一致。
另外,盡管 master / slave 設(shè)置的 maxmemory 相同,如果你要調(diào)整它們的上限,也要格外注意,否則也會(huì)導(dǎo)致 slave 淘汰數(shù)據(jù):
-
調(diào)大 maxmemory 時(shí),先調(diào)整 slave,再調(diào)整 master -
調(diào)小 maxmemory 時(shí),先調(diào)整 master,再調(diào)整 slave
以此方式操作,就避免了 slave 提前超過 maxmemory 的問題。
其實(shí),你可以思考一下,發(fā)生這些問題的關(guān)鍵在哪?
其根本原因在于,slave 超過 maxmemory 后,會(huì)「自行」淘汰數(shù)據(jù)。
如果不讓 slave 自己淘汰數(shù)據(jù),那這些問題是不是都可以規(guī)避了?
沒錯(cuò)。
針對這個(gè)問題,Redis 官方應(yīng)該也收到了很多用戶的反饋。在 Redis 5.0 版本,官方終于把這個(gè)問題徹底解決了!
Redis 5.0 增加了一個(gè)配置項(xiàng):replica-ignore-maxmemory,默認(rèn) yes。
這個(gè)參數(shù)表示,盡管 slave 內(nèi)存超過了 maxmemory,也不會(huì)自行淘汰數(shù)據(jù)了!
這樣一來,slave 永遠(yuǎn)會(huì)向 master 看齊,只會(huì)老老實(shí)實(shí)地復(fù)制 master 發(fā)送過來的數(shù)據(jù),不會(huì)自己再搞「小動(dòng)作」。
至此,master / slave 的數(shù)據(jù)就可以保證完全一致了!
如果你使用的恰好是 5.0 版本,就不用擔(dān)心這個(gè)問題了。
5) slave 竟然會(huì)有內(nèi)存泄露問題?
是的,你沒看錯(cuò)。
這是怎么發(fā)生的?我們具體來看一下。
當(dāng)你在使用 Redis 時(shí),符合以下場景,就會(huì)觸發(fā) slave 內(nèi)存泄露:
-
Redis 使用的是 4.0 以下版本 -
slave 配置項(xiàng)為 read-only=no(從庫可寫) -
向 slave 寫入了有過期時(shí)間的 key
這時(shí)的 slave 就會(huì)發(fā)生內(nèi)存泄露:slave 中的 key,即使到了過期時(shí)間,也不會(huì)自動(dòng)清理。
如果你不主動(dòng)刪除它,那這些 key 就會(huì)一直殘留在 slave 內(nèi)存中,消耗 slave 的內(nèi)存。
最麻煩的是,你使用命令查詢這些 key,卻還查不到任何結(jié)果!
這就 slave 「內(nèi)存泄露」問題。
這其實(shí)也是 Redis 的一個(gè) Bug,Redis 4.0 才修復(fù)了這個(gè)問題。
解決方案是,在可寫的 slave 上,寫入帶有過期時(shí)間 key 時(shí),slave 會(huì)「記錄」下來這些 key。
然后 slave 會(huì)定時(shí)掃描這些 key,如果到達(dá)過期時(shí)間,則清理之。
如果你的業(yè)務(wù)需要在 slave 上臨時(shí)存儲(chǔ)數(shù)據(jù),而且這些 key 也都設(shè)置了過期時(shí)間,那么就要注意這個(gè)問題了。
你需要確認(rèn)你的 Redis 版本,如果是 4.0 以下版本,一定要避免踩這個(gè)坑。
其實(shí),最好的方案是,制定一個(gè) Redis 使用規(guī)范,slave 必須強(qiáng)制設(shè)置為 read-only,不允許寫,這樣不僅可以保證 master / slave 的數(shù)據(jù)一致性,還避免了 slave 內(nèi)存泄露問題。
6) 為什么主從全量同步一直失敗?
在主從全量同步時(shí),你可能會(huì)遇到同步失敗的問題,具體場景如下:
slave 向 master 發(fā)起全量同步請求,master 生成 RDB 后發(fā)給 slave,slave 加載 RDB。
由于 RDB 數(shù)據(jù)太大,slave 加載耗時(shí)也會(huì)變得很長。
此時(shí)你會(huì)發(fā)現(xiàn),slave 加載 RDB 還未完成,master 和 slave 的連接卻斷開了,數(shù)據(jù)同步也失敗了。
之后你又會(huì)發(fā)現(xiàn),slave 又發(fā)起了全量同步,master 又生成 RDB 發(fā)送給 slave。
同樣地,slave 在加載 RDB 時(shí),master / slave 同步又失敗了,以此往復(fù)。
這是怎么回事?
其實(shí),這就是 Redis 的「復(fù)制風(fēng)暴」問題。
什么是復(fù)制風(fēng)暴?
就像剛才描述的:主從全量同步失敗,又重新開始同步,之后又同步失敗,以此往復(fù),惡性循環(huán),持續(xù)浪費(fèi)機(jī)器資源。
為什么會(huì)導(dǎo)致這種問題呢?
如果你的 Redis 有以下特點(diǎn),就有可能發(fā)生這種問題:
-
master 的實(shí)例數(shù)據(jù)過大,slave 在加載 RDB 時(shí)耗時(shí)太長 -
復(fù)制緩沖區(qū)(slave client-output-buffer-limit)配置過小 -
master 寫請求量很大
主從在全量同步數(shù)據(jù)時(shí),master 接收到的寫請求,會(huì)先寫到主從「復(fù)制緩沖區(qū)」中,這個(gè)緩沖區(qū)的「上限」是配置決定的。
當(dāng) slave 加載 RDB 太慢時(shí),就會(huì)導(dǎo)致 slave 無法及時(shí)讀取「復(fù)制緩沖區(qū)」的數(shù)據(jù),這就引發(fā)了復(fù)制緩沖區(qū)「溢出」。
為了避免內(nèi)存持續(xù)增長,此時(shí)的 master 會(huì)「強(qiáng)制」斷開 slave 的連接,這時(shí)全量同步就會(huì)失敗。
之后,同步失敗的 slave 又會(huì)「重新」發(fā)起全量同步,進(jìn)而又陷入上面描述的問題中,以此往復(fù),惡性循環(huán),這就是所謂的「復(fù)制風(fēng)暴」。
如何解決這個(gè)問題呢?我給你以下幾點(diǎn)建議:
-
Redis 實(shí)例不要太大,避免過大的 RDB -
復(fù)制緩沖區(qū)配置的盡量大一些,給 slave 加載 RDB 留足時(shí)間,降低全量同步失敗的概率
如果你也踩到了這個(gè)坑,可以通過這個(gè)方案來解決。
總結(jié)
好了,總結(jié)一下,這篇文章我們主要講了 Redis 在「命令使用」、「數(shù)據(jù)持久化」、「主從同步」3 個(gè)方面可能存在的「坑」。
怎么樣?有沒有顛覆你的認(rèn)知呢?
這篇文章信息量還是比較大的,如果你現(xiàn)在的思維已經(jīng)有些「凌亂」了,別急,我也給你準(zhǔn)備好了思維導(dǎo)圖,方便你更好地理解和記憶。
希望你在使用 Redis 時(shí),可以提前規(guī)避這些坑,讓 Redis 更好地提供服務(wù)。
后記
最后,我想和你聊一聊在開發(fā)過程中,關(guān)于踩坑的經(jīng)驗(yàn)和心得。
其實(shí),接觸任何一個(gè)新領(lǐng)域,都會(huì)經(jīng)歷陌生、熟悉、踩坑、吸收經(jīng)驗(yàn)、游刃有余這幾個(gè)階段。
那在踩坑這個(gè)階段,如何少踩坑?或者踩坑后如何高效率地排查問題呢?
這里我總結(jié)出了 4 個(gè)方面,應(yīng)該可以幫助到你:
1) 多看官方文檔 + 配置文件的注釋
一定要多看官方文檔,以及配置文件的注釋說明。其實(shí)很多可能存在風(fēng)險(xiǎn)的地方,優(yōu)秀的軟件都會(huì)在文檔和注釋里提示你的,認(rèn)真讀一讀,可以提前規(guī)避很多基礎(chǔ)問題。
2) 不放過疑問細(xì)節(jié),多思考為什么?
永遠(yuǎn)要保持好奇心。遇到問題,掌握剝絲抽繭,逐步定位問題的能力,時(shí)刻保持探尋事物問題本質(zhì)的心態(tài)。
3) 敢于提出質(zhì)疑,源碼不會(huì)騙人
如果你覺得一個(gè)問題很蹊蹺,可能是一個(gè) Bug,要敢于提出質(zhì)疑。
通過源碼尋找問題的真相,這種方式要好過你看一百篇網(wǎng)上互相抄襲的文章(抄來抄去很有可能都是錯(cuò)的)。
4) 沒有完美的軟件,優(yōu)秀軟件都是一步步迭代出來的
任何優(yōu)秀的軟件,都是一步步迭代出來的。在迭代過程中,存在 Bug 很正常,我們需要抱著正確的心態(tài)去看待它。
這些經(jīng)驗(yàn)和心得,適用于學(xué)習(xí)任何領(lǐng)域,希望對你有所幫助。
免責(zé)聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。文章僅代表作者個(gè)人觀點(diǎn),不代表本平臺(tái)立場,如有問題,請聯(lián)系我們,謝謝!