兩個獨立的直接變頻接收器擁有首屈一指的噪聲系數(shù)和線性度。每個接收(RX)子系統(tǒng)都擁有獨立的自動增益控制(AGC)、直流失調(diào)校正、正交校正和數(shù)字濾波功能,從而消除了在數(shù)字基帶中提供這些功能的必要性。TheAD9361還擁有靈活的手動增益模式,支持外部控制。每個通道搭載兩個高動態(tài)范圍模數(shù)轉(zhuǎn)換器(ADC),先將收到的I信號和Q信號進(jìn)行數(shù)字化處理,然后將其傳過可配置抽取濾波器和128抽頭有限脈沖響應(yīng)(FIR)濾波器,結(jié)果以相應(yīng)的采樣率生成12位輸出信號。
發(fā)射器采用直接變頻架構(gòu),可實現(xiàn)較高的調(diào)制精度和超低的噪聲。這種發(fā)射器設(shè)計帶來了行業(yè)最佳的TX誤差矢量幅度(EVM),數(shù)值不到?40 dB,可為外部功率放大器(PA)的選擇留出可觀的系統(tǒng)裕量。板載發(fā)射(TX)功率監(jiān)控器可以用作功率檢測器,從而實現(xiàn)高度精確的TX功率測量。
完全集成的鎖相環(huán)(PLL)可針對所有接收和發(fā)射通道提供低功耗的小數(shù)N分頻頻率合成。設(shè)計中集成了頻分雙工(FDD)系統(tǒng)需要的通道隔離。
2、9361系統(tǒng)構(gòu)成
框架:
它支持2x2 MIMO通信,收發(fā)各有兩條獨立的射頻通路。
TX射頻前端構(gòu)成如下圖:
TX數(shù)據(jù)通路如下圖所示:
RX射頻前端構(gòu)成如下圖所示:
RX數(shù)據(jù)通路如下圖所示:
3、初始化及校準(zhǔn)總述
AD9361在上電之后便會進(jìn)入休眠狀態(tài)。此時用戶需要根據(jù)所需參數(shù),對芯片進(jìn)行初始化配置。其配置包括以下幾方面:
| 基本參數(shù)配置(包含SPI時鐘頻率、DCXO補償、射頻時鐘使能)
| BB PLL頻率配置及校準(zhǔn)
| PolyPhase TX Digital Filter的系數(shù)寫入
| PolyPhase RX Digital Filter的系數(shù)寫入
| 數(shù)字?jǐn)?shù)據(jù)接口配置
| AuxDAC/AuxADC初始化
| Control_Out端口輸出配置
| GPO端口參數(shù)配置
| 頻率無關(guān)的射頻參數(shù)配置,包括LO Power、VCO&LDO的參數(shù)配置、Charge Pump校準(zhǔn)等)
| T/Rx頻率綜合器參數(shù)配置
| T/Rx工作頻率配置及校準(zhǔn)
| Mixer GM table增益配置
| RX Gain table配置
| RX手動增益配置
| T/RX基帶模擬濾波器校準(zhǔn)(tune)
| RX TIA配置及校準(zhǔn)
| 二級TX濾波器校準(zhǔn)
| ADC初始化
| BB/RF DC校準(zhǔn)
| 發(fā)射數(shù)據(jù)正交性校準(zhǔn)(相當(dāng)于IQ校準(zhǔn))
| TX增益配置
| RSSI及功率測量的初始化
使用AD9361,我們主要關(guān)注的有五個方面:一是其中各器件的校準(zhǔn);二是有關(guān)濾波器的配置;三是有關(guān)數(shù)字部分接口的模式、工作方式的配置;四是射頻工作狀態(tài)機(jī)控制;五是有關(guān)T/Rx增益的配置。以下分4節(jié)對這幾個方面分別闡述。
4、時鐘源和RF & BB PLL頻率綜合器
由于時鐘是整個芯片的核心,在介紹上節(jié)所述五方面之前,我們先詳述一下AD9361的時鐘、PLL和頻率綜合器。
4.1 參考時鐘及DCXO
AD9361使用分?jǐn)?shù)分頻鎖相環(huán)生成一個本地時鐘為信號轉(zhuǎn)換、數(shù)字濾波器、IO端口提供時鐘源。這些PLL均需要一個參考時鐘,這個時鐘可以通過外部晶振提供,或者由外部晶體加上一個可變電容生成所需頻率。在使用外部晶體的情況下,需使用DCXO補償晶體頻率來保證輸出參考時鐘穩(wěn)定。
4.2 RF & BB PLL 頻率綜合器
參考時鐘輸入后,分別進(jìn)入3個獨立的PLL(如上圖所示),分別為T/RX頻率綜合器、基帶PLL提供參考時鐘源。3個PLL需各自進(jìn)行校準(zhǔn)。
A)TX、RX PLL的鎖定
在FDD模式下,TX和RX的PLL可工作在不同頻率下,它們同時開啟;TDD模式下,TX和RX的PLL根據(jù)收發(fā)情況輪流開啟。
一般的TDD模式工作狀態(tài)按照Rx-ALERT-Tx-ALERT-Rx跳轉(zhuǎn),基帶通過跳轉(zhuǎn)TXNRX信號來控制TX、RX狀態(tài)的跳轉(zhuǎn),當(dāng)TXNRX從0跳變到1時,RX PLL關(guān)閉,TX PLL開啟并進(jìn)行重新校準(zhǔn)鎖定,反之TX PLL關(guān)閉,RX PLL開啟并重新校準(zhǔn)鎖定。TDD模式下每次PLL校準(zhǔn)鎖定的時間大概為45us~60us左右。
不過假如系統(tǒng)每次收發(fā)幀所使用的載波頻率不變,則不需每次打開TX或RX時重新進(jìn)行校準(zhǔn),而沿用上一次的校準(zhǔn)值。此時需要在一次校準(zhǔn)過后將寄存器中的VCO Cal比特關(guān)閉,這樣可以明顯得縮短信號收發(fā)之前,頻率綜合器的穩(wěn)定時間。
B)Fast Lock模式
假如你的系統(tǒng)需要在多個頻點上工作,則可以使用Fast Lock模式,它支持保存多個頻點的頻率控制字,使得頻率變化是,PLL的鎖定時間更短。然而這種模式TX和RX分別最多只能保存8個頻點,還是有一點局限性。
5、器件校準(zhǔn)
AD9361的校準(zhǔn)及其校驗方式簡介如下表所示:
每次芯片上電或者硬件復(fù)位之后都必須進(jìn)行校準(zhǔn),校準(zhǔn)之后的參數(shù)會被保存。
校準(zhǔn)的順序由狀態(tài)機(jī)控制,其狀態(tài)如下表所示。由于其中部分校準(zhǔn)需導(dǎo)入其他校準(zhǔn)所得結(jié)果,因此假如多個校準(zhǔn)同時使能,則校準(zhǔn)順序由校準(zhǔn)狀態(tài)機(jī)控制。當(dāng)校準(zhǔn)狀態(tài)機(jī)停留在0x1狀態(tài)時,表示校準(zhǔn)完成。
需要注意的是:T/Rx的基帶濾波器校準(zhǔn)不受校準(zhǔn)狀態(tài)機(jī)控制,必須在其他校準(zhǔn)均不進(jìn)行時,進(jìn)行T/Rx基帶濾波器的校準(zhǔn)。
注1:RF頻率綜合器VCO校準(zhǔn)
AD9361的發(fā)射和接收的頻率綜合器是獨立的,因此TX和RX的RF VCO校準(zhǔn)需分別進(jìn)行。
在TDD模式下,TXNRX為高代表發(fā)射,TXNRX低代表接收,做RF TX VCO校準(zhǔn)時,TXNRX需拉高;RF RX VCO校準(zhǔn)時,TXNRX拉低。FDD模式下,需要將ENSM調(diào)整到ALERT狀態(tài),隨后使能頻率綜合器校準(zhǔn)。
官方建議無論使用TDD還是FDD工作模式,均可在做RF頻率綜合器VCO校準(zhǔn)時,使用FDD的校準(zhǔn)方式,因為FDD校準(zhǔn)的頻率更準(zhǔn)確穩(wěn)定,但是弊端是耗時較長。
注2:T/Rx模擬濾波器校準(zhǔn)
模擬濾波器校準(zhǔn)有一點需要注意,在進(jìn)行校準(zhǔn)帶寬設(shè)置時,帶寬值需要設(shè)置成BB帶寬的1.6倍,BB帶寬值是基帶復(fù)數(shù)輸出帶寬的一半,即RX為26MHz–0.2MHz,TX為20MHz~0.625MHz。
6、濾波器配置
本節(jié)介紹發(fā)射和接收的濾波器通路。
6.1 發(fā)射濾波器通路
TX濾波器通路總體分為3級數(shù)字濾波器和兩級模擬濾波器,示意圖如下圖所示:
通路輸入為I、Q兩路12bit補碼。
A)TX數(shù)字濾波器
數(shù)字濾波器分為4級,主要用于對接口I、Q信號進(jìn)行插值濾波。它們可由用戶控制選通。
第一級Prog TX FIR支持1倍、2倍、4倍插值,可通過用戶配置最高128階位寬16bit濾波器系數(shù),并且可提供0~-6db濾波器增益。其插值倍數(shù)和濾波器階數(shù)關(guān)系如表所示:
第二級HB1是一個固定2倍插值低通濾波器。其濾波器系數(shù)為[?53, 0, 313, 0, ?1155, 0, 4989, 8192, 4989,0, ?1155, 0, 313, 0, ?53]。頻率幅度相應(yīng)如圖:
第三級HB2也是一個固定2倍插值低通濾波器,系數(shù)為[?9, 0, 73, 128, 73, 0, ?9]。其幅頻相應(yīng)如圖所示。
第四級HB3/INT3可實現(xiàn)2倍或者3倍插值。2倍插值濾波系數(shù)為[1, 2, 1],其幅頻相應(yīng)如圖6-4所示。三倍插值系數(shù)為[36, ?19, 0, ?156, ?12, 0, 479, 223, 0, ?1215, ?993, 0, 3569, 6277,8192, 6277, 3569, 0, ?993, ?1215, 0, 223, 479, 0, ?12, ?156, 0, ?19, 36],幅頻相應(yīng)如圖所示。
B)TX模擬濾波器
在數(shù)字濾波信號經(jīng)過DAC轉(zhuǎn)換成模擬信號之后,需要經(jīng)過低通濾波器在濾除雜散干擾。
模擬濾波器分為兩級,帶寬均可配置。第一級的帶寬范圍較窄,為625kHz–32MHz,通帶帶寬設(shè)置為信號帶寬的1.6倍;第二級的帶寬范圍為2.7MHz~100MHz,通帶帶寬設(shè)置為信號帶寬的5倍。
6.2 接收濾波器通路
接收通路分為兩級模擬濾波器和四級數(shù)字濾波器,連接示意圖如圖所示:
通路輸出也為12bit補碼。
A)RX模擬濾波器
接收端模擬濾波器也分為兩級,第一級TIA LPF的可配置帶寬為1MHz–70MHz,配置帶寬設(shè)置為信號帶寬的2.5倍;第二級BB LPF的可配帶寬為200kHz~39.2MHz,配置帶寬為信號帶寬的1.4倍。
B)RX數(shù)字濾波器
數(shù)字通路的4級濾波器正好是發(fā)射通路的反向。
第一級HB3/DEC3為2倍或3倍抽取可選。2倍抽取的濾波系數(shù)為[1, 4, 6, 4, 1],其幅頻相應(yīng)如圖所示。3倍抽取濾波器系數(shù)為[55, 83, 0, ?393, ?580, 0, 1914, 4041, 5120, 4041, 1914, 0, ?580,?393, 0, 83, 55]。其幅頻相應(yīng)如圖所示。
第二級HB2和第三級HB1均為2倍抽取的低通濾波器。其系數(shù)如下:
HB2:[?9, 0, 73, 128, 73, 0, ?9]
HB3:[?8, 0, 42, 0, ?147, 0, 619, 1013, 619, 0, ?147, 0, 42, 0, ?8]
HB2的幅頻相應(yīng)如圖6-9,HB3的幅頻相應(yīng)如圖。
最后一級Prog RX FIR也支持1倍、2倍、4倍抽取,可通過用戶配置最高128階位寬16bit濾波器系數(shù),并且可提供-12db、-6db、0db、6db濾波器增益。
7、數(shù)字接口詳述
AD9361與數(shù)字基帶的接口示意圖如圖7-1所示:
數(shù)字接口電平有兩種可配置模式:CMOS和LVDS。
7.1 接口功能介紹
AD9361主要的接口有SPI、數(shù)據(jù)端口P0_D、P1_D、DATA_CLK、FB_CLK、TX_FRAME、RX_FRAME、ENABLE、TXNRX。
| SPI:該芯片集成的SPI接口為4線SPI,可讀可寫,主要用于配置內(nèi)部寄存器。
| P0/1_D:這是數(shù)據(jù)傳輸端口,位寬均為12bit,根據(jù)應(yīng)用模式可配置成輸入、輸出和雙向。
| DATA_CLK:DATA_CLK由AD9361輸出。該時鐘主要用于RX狀態(tài)外部數(shù)字基帶對P0_D、P1_D數(shù)據(jù)采樣,數(shù)字基帶生成的數(shù)據(jù)和控制信號均需為DATA_CLK時鐘域的,否則可能導(dǎo)致AD9361獲取數(shù)據(jù)時的采樣問題。CMOS模式下DATA_CLK通過DATA_CLK_P端口輸出。
| FB_CLK:FB_CLK是DATA_CLK反饋到AD9361的數(shù)據(jù)時鐘。用于AD9361內(nèi)部對TX_FRAME、ENABLE、TXNRX信號的上升沿采樣,以及對于P0_D、P1_D數(shù)據(jù)端口的上升沿和下降沿采樣。注意:FB_CLK必須與DATA_CLK同源(頻率相同,占空比相同),對兩個時鐘的相位沒有要求。CMOS模式下,僅適用FB_CLK_P線。
| RX_FRAME:RX_FRAME用于在接收狀態(tài)下標(biāo)識P0_D、P1_D的數(shù)據(jù)有效。它可以配置成常高,或是50%占空比的脈沖信號。
| TX_FRAME:TX_FRAME用于TX狀態(tài)下,標(biāo)識發(fā)射數(shù)據(jù)有效。其時序與RX_FRAME類似。發(fā)射狀態(tài)下,TX_FRAME為低,射頻發(fā)射空數(shù)據(jù)。
| ENABLE & TXNRX:ENABLE和TXNRX信號主要在TDD模式下使用,ENABLE拉高時,根據(jù)TXNRX信號,使射頻芯片進(jìn)入TX或RX狀態(tài),TXNRX為1表示TX,為0表示RX。
7.2 接口模式
AD9361數(shù)字接口模式主要分四個方面:電平模式(LVDS、CMOS),數(shù)據(jù)速率(Single Data Rate(SDR)、Dual Data Rate(DDR)),端口模式(Dual Port、Single Port)、收發(fā)天線個數(shù)(1T1R、2T2R)(此處暫時不詳述)。
A)電平模式
接口電平模式主要根據(jù)電平信號類型來分類,主要分為兩種:LVDS模式和CMOS模式。它們的區(qū)別體現(xiàn)在可使用的信號bit位上。
CMOS模式下,各種接口時序的最高頻率如表所示。
LVDS模式下,各接口時序的最高頻率如表所示
CMOS模式下,所有接口信號都是單端信號。在此電平模式下,允許兩組12bit端口P0_D、P1_D并行使用,即允許雙端口時序。CMOS模式下,單端口信號TX時序如圖7-2,RX時序如圖7-3;P0/1_D和T/Rx_D_P/N的對應(yīng)關(guān)系可參見硬件連接的spec。
LVDS模式下,每bit信號需要P和N兩個接口,因此24bit接口用作12bit數(shù)據(jù)信號。LVDS模式下,TX信號時序如圖7-4所示,RX信號時序如圖所示。
B)數(shù)據(jù)速率
數(shù)據(jù)速率是針對數(shù)據(jù)端口和時鐘的關(guān)系來區(qū)分。主要分為兩種:Single Data Rate(SDR)、Dual Data Rate(DDR)。
SDR的時序舉例如下圖所示:
DDR的時序舉例如圖所示:
C)端口模式
端口模式的區(qū)分主要根據(jù)使用端口的個數(shù)上,分為雙端口(Dual Port)和單端口(Single Port)。
單端口如圖所示;雙端口如圖所示。
8、射頻工作狀態(tài)機(jī)控制
AD9361的工作模式通過狀態(tài)機(jī)(ENSM,enable state machine)控制,ENSM可通過SPI控制狀態(tài)跳轉(zhuǎn),也可以通過ENABLE、TXNRX pin信號來實時控制。不過假如校準(zhǔn)不成功,這些控制均無效。
圖8-1為TDD和FDD模式下,ENSM各狀態(tài)之間的跳轉(zhuǎn)關(guān)系。圖中的TO_ALERT是通過寄存器ENSM Config1控制,它的作用是在ENSM從TX或者RX狀態(tài)跳轉(zhuǎn)到WAIT狀態(tài)后,自動進(jìn)入ALERT狀態(tài)。
ENSM的狀態(tài)定義如表所示。
8.1 SPI控制
SPI控制跳轉(zhuǎn)與接口時鐘DATA_CLK非一個時鐘域,因此被認(rèn)為是異步跳轉(zhuǎn),默認(rèn)關(guān)閉,可通過ENSM Config1寄存器打開。
ENSM狀態(tài)機(jī)控制寄存器如下表所示:
其中Force Rx、Force Tx、Force Alert State用于在TDD模式下,SPI控制狀態(tài)機(jī)。而在FDD模式下,F(xiàn)orce Rx信號是無用的,從ALERT->FDD狀態(tài)通過Force Tx控制。
8.2 ENABLE/TXNRX PIN控制
ENABLE/TXNRX Pin控制跳轉(zhuǎn)默認(rèn)開啟。這種控制模式還分兩種:一種是Pulse Mode;二是Level Mode。
Pulse Mode
PulseMode的Pulse主要是針對ENABLE信號而言的。TXNRX主要標(biāo)示下一個狀態(tài)是跳轉(zhuǎn)到TX還是RX,為1時跳轉(zhuǎn)TX,為0時跳轉(zhuǎn)RX。
ENABLE以脈沖的形式給出,脈寬不得小于一個FB_CLK周期。TDD模式下控制時序如下圖8-2所示:
FDD模式下,控制時序如圖8-3所示
Level Mode
LevelMode下,ENABLE以電平形式給出,而ENABLE信號為高時表示芯片現(xiàn)在處于工作狀態(tài)。而VCO、LDO的上電使能還是要通過SPI配置。
TDD模式下,控制時序如圖8-4所示:
FDD模式下,控制時序如圖8-5所示:
3、FDD Independent模式
AD9361的TX和RX在FDD模式下允許工作在同一載波頻率下,這就使得FDD模式不局限于僅適用在全雙工系統(tǒng)中。像wifi、藍(lán)牙這樣的半雙工系統(tǒng),也可以使用FDD模式來避開TDD模式下PLL穩(wěn)定時間較長的問題。而假如FDD模式,TX、RX工作在同一頻率,則會導(dǎo)致發(fā)送和接收的相互干擾,此時我們就需要TX、RX支持開關(guān)。
而本小節(jié)的FDD Independent模式便支持收發(fā)開關(guān)獨立控制,功能開關(guān)是ENSM Config2 D7比特。功能開啟后,可通過TXNRX、ENABLE共同控制TX、RX的開啟關(guān)閉,控制邏輯如表所示。
這個模式下,收發(fā)關(guān)閉后,狀態(tài)機(jī)是不會跳轉(zhuǎn)到FDD FLUSH狀態(tài)的,因此用戶使用時要控制好時間,在兩次收或者發(fā)開啟之間留下足夠的時間清空殘留數(shù)據(jù)。
FDDIndependent模式的Level Mode和Pulse Mode的控制時序如圖所示:
8.4 ENSM與RF VCO校準(zhǔn)
ENSM會輸出一個內(nèi)部信號,控制TX、RX頻率綜合器校準(zhǔn)。
FDD模式下,TX、RX頻率綜合器會在兩種情況下進(jìn)行校準(zhǔn),一是ENSM從WAIT->ALERT時,二是頻率控制字寫入時。而在FDD狀態(tài)下,校準(zhǔn)結(jié)果是保持不變的。
TDD模式下,與FDD類似,會在ENSM從WAIT->ALERT時進(jìn)行校準(zhǔn),在頻率控制字寫入時,會根據(jù)TXNRX判斷,讓當(dāng)前使能的VCO進(jìn)行校準(zhǔn)。
為了節(jié)省功耗,TDD模式下,T/Rx的VCO并一直保持鎖定狀態(tài),在RX使能時,TX VCO會關(guān)閉,反之亦然。當(dāng)TXNRX改變時,再對當(dāng)前使能的VCO重新校準(zhǔn)。因此在使用時,ALERT狀態(tài)下應(yīng)該盡早跳轉(zhuǎn)TXNRX來為VCO校準(zhǔn)爭取最大時間。