當(dāng)前位置:首頁(yè) > 物聯(lián)網(wǎng) > 《物聯(lián)網(wǎng)技術(shù)》雜志
[導(dǎo)讀]摘 要 :圖像處理作為計(jì)算機(jī)視覺(jué)技術(shù)必不可少的部分,成為眾多學(xué)者口中的熱點(diǎn)及難點(diǎn)。圖像分割是把圖像分成若干個(gè)特定、具有獨(dú)特性質(zhì)的區(qū)域并提出感興趣目標(biāo)的技術(shù)和過(guò)程,目的是實(shí)現(xiàn)通過(guò)醫(yī)學(xué)領(lǐng)域的閾值分割方法以有效分割作物與背景。此次實(shí)驗(yàn)以田間小麥圖像作為研究對(duì)象,通過(guò)多圖像進(jìn)行預(yù)處理以及利用圖像分割技術(shù)中的閾值分割算法,從復(fù)雜的背景中提取出小麥。結(jié)果表明,閾值分割算法不僅可以提取出作物信息而且還有助于去除噪聲的影響。此次實(shí)驗(yàn)為基于圖像識(shí)別及計(jì)算機(jī)視覺(jué)技術(shù)的農(nóng)田綠色作物識(shí)別技術(shù)研究提供了參考。

0 引 言

新時(shí)代之際,計(jì)算機(jī)視覺(jué)技術(shù)席卷而來(lái)。基于機(jī)器視覺(jué)的圖像識(shí)別技術(shù)在農(nóng)業(yè)領(lǐng)域得到了廣泛應(yīng)用。最初的圖像識(shí)別扮演著實(shí)用工具的角色,目的是將物理圖像轉(zhuǎn)換為數(shù)字圖像,而今天,圖像識(shí)別技術(shù)開(kāi)始著重于機(jī)器層面上的智能識(shí)別。于農(nóng)業(yè)而言,十九大報(bào)告中指出 :世界各國(guó)農(nóng)業(yè)的發(fā)展從最初的體力為主的農(nóng)業(yè) 1.0,到農(nóng)業(yè)機(jī)械為主的農(nóng)業(yè) 2.0, 再到自動(dòng)化裝備齊全的農(nóng)業(yè) 3.0,直到現(xiàn)如今的以物聯(lián)網(wǎng)、人工智能等為主的農(nóng)業(yè) 4.0。因此,怎樣通過(guò)有限的耕地資源生產(chǎn)出盡可能多的農(nóng)產(chǎn)品已成為我國(guó)農(nóng)業(yè)發(fā)展所面臨的一個(gè)重要問(wèn)題。針對(duì)這一挑戰(zhàn),基于圖像識(shí)別與圖像處理技術(shù)的農(nóng)作物識(shí)別、農(nóng)作物生長(zhǎng)監(jiān)測(cè)等被眾多學(xué)者提出,已成為學(xué)術(shù)界研究的主流 [1-6]。

圖像識(shí)別技術(shù)在被廣泛應(yīng)用的同時(shí),大家對(duì)于圖像的各 項(xiàng)要求也越來(lái)越高,需求越來(lái)越多。同時(shí),在我們使用手機(jī)、照相機(jī)等進(jìn)行圖像拍攝、傳輸?shù)倪^(guò)程中,可能會(huì)導(dǎo)致斑點(diǎn)的 產(chǎn)生,使得圖像模糊不清,此時(shí)便需要針對(duì)所處理的圖像進(jìn) 行去噪、圖像增強(qiáng)、圖像分割等操作 [7];圖像分割技術(shù)中, 若需要提取圖像的邊緣信息,則需要熟悉邊緣提取操作,而 圖像識(shí)別技術(shù)的邊緣提取會(huì)涉及許多算法 [8];若需要進(jìn)行去除噪聲以及圖像孤立點(diǎn)的操作,則需要使用均值濾波、中值 濾波 [9]、形態(tài)學(xué)濾波 [8]等 ;若數(shù)字圖像比較模糊,則需要通過(guò)圖像增強(qiáng)來(lái)提高圖像的清晰度,如直方圖均衡化 [10]操作 ; 我們也可以通過(guò)角點(diǎn)檢測(cè) [11]算法或者圖像壓縮 [12]算法來(lái)簡(jiǎn)化圖像數(shù)據(jù),進(jìn)而提取出有用的特征參數(shù)??傊?,圖像分割技術(shù)應(yīng)用廣泛。目前,國(guó)內(nèi)外學(xué)者仍然熱衷于圖像預(yù)處理相關(guān)算法的改進(jìn)與完善,因而它并非十全十美,相關(guān)算法需要我們深度理解,盡自己所能去改進(jìn)算法,為圖像處理技術(shù)創(chuàng)新盡自己的綿薄之力。

1 國(guó)內(nèi)外研究

現(xiàn)在幾乎每個(gè)人都有手機(jī),手機(jī)上的攝像頭分辨率也在迅速提高。使用機(jī)器識(shí)別用手機(jī)拍攝的植物圖片顯然比使用其他傳感器收集數(shù)據(jù)更方便,更容易推廣?;趫D像處理的機(jī)器識(shí)別方法也成為近年來(lái)的研究熱點(diǎn)。

植物類型的視覺(jué)識(shí)別對(duì)植物學(xué)家來(lái)說(shuō)可能很容易,但對(duì)機(jī)器來(lái)說(shuō),這是一項(xiàng)復(fù)雜且計(jì)算成本高昂的任務(wù)。Puja 等 [13] 設(shè)計(jì)了一種葉片識(shí)別系統(tǒng),該系統(tǒng)是植物病害識(shí)別的前置步驟。作者使用了兩步算法,包括分割和分類。系統(tǒng)采用主成分分析法進(jìn)行降維,支持向量機(jī)作為分類器,縮放不同大小的植物圖像。該方法的準(zhǔn)確率為 77.96%,可以通過(guò)加入更多的葉片特征來(lái)提高準(zhǔn)確率。Lavania 和 Matey[14] 設(shè)計(jì)了一種基于尺度不變特征變換的葉片識(shí)別方法,旨在避免人類參與特征提取過(guò)程。該方法利用尺度不變特征變換(SIFT)的關(guān)鍵描述符進(jìn)行邊緣檢測(cè)和分類,采用平均投影算法作為第二種基于輪廓的邊緣檢測(cè)方法。他們以葉片圖像作為輸入,進(jìn)行特征提取,之后進(jìn)行關(guān)鍵點(diǎn)計(jì)算,并存儲(chǔ)計(jì)算出的關(guān)鍵點(diǎn),然后與數(shù)據(jù)集中的葉片圖像進(jìn)行匹配,從而進(jìn)行植物分類。作者將該方法與基于 SIFT 和輪廓的邊緣檢測(cè)方法進(jìn)行了對(duì)比,并將該方法與 Flavia 數(shù)據(jù)集進(jìn)行了基于 Zernike 矩和定向梯度直方圖的植物識(shí)別研究,準(zhǔn)確率為87.5%。

Salve 等 [15] 利用 Zernike 矩和梯度方向直方圖(HOG)作為形狀描述符特征,在 50 種不同植物的數(shù)據(jù)集上對(duì)該方法進(jìn)行了測(cè)試。首先對(duì)圖像進(jìn)行預(yù)處理,然后應(yīng)用 Zernike 矩和梯度方向直方圖進(jìn)行特征提取。由于健壯性和特性持久性,HOG 的性能優(yōu)于 Zernike 矩,報(bào)告準(zhǔn)確率為 84.66%。將上述特征與一些基于葉子的特征相結(jié)合,可以進(jìn)一步改善其結(jié)果。另一項(xiàng)研究基于一種新的形狀描述符,他們使用周期小波描述符(PWD)創(chuàng)建了一個(gè)包含不同植物物種特征的數(shù)據(jù)庫(kù),首先利用反向傳播神經(jīng)網(wǎng)絡(luò)對(duì) PWD 特征進(jìn)行訓(xùn)練, 然后對(duì)葉片進(jìn)行識(shí)別,識(shí)別準(zhǔn)確率 [16] 達(dá) 90%。

還有一種基于形狀生長(zhǎng)模式的物體識(shí)別技術(shù),這項(xiàng)工作是對(duì)形狀進(jìn)行膨脹,從而計(jì)算出具有重要特征的圖像的更新尺寸。這項(xiàng)工作被證明對(duì)噪音有彈性,但涉及到計(jì)算開(kāi)銷和目標(biāo)識(shí)別能力,且要求較高。文獻(xiàn) [17] 提出了一種自動(dòng)亮度調(diào)節(jié)系統(tǒng),可用于更好地識(shí)別目標(biāo)。這項(xiàng)工作通過(guò)獲取 CIE 實(shí)驗(yàn)室空間的 RGB 和“L”分量來(lái)調(diào)整圖像的亮度,由模糊推理系統(tǒng)計(jì)算每個(gè)像素的調(diào)整系數(shù)。該工作聲稱圖像的自動(dòng)亮度調(diào)節(jié)有助于更好地識(shí)別目標(biāo),可用于目標(biāo)識(shí)別系統(tǒng)的預(yù)處理階段。

2 圖像分割技術(shù)原理

圖像分割是由圖像處理到圖像分析的關(guān)鍵步驟,一直以來(lái)都是圖像處理技術(shù)中的難點(diǎn)之一。時(shí)至今日借助各種理論模型提出的分割算法已達(dá)上千種,但如何高效地將特征目標(biāo)從復(fù)雜的源圖像中分割出來(lái)始終是一個(gè)熱點(diǎn)話題。圖像分割的重要性和實(shí)用性在引起廣泛研究的同時(shí),在自動(dòng)式和交互式方面還提出了大量方法,如強(qiáng)度、顏色、紋理等。雖然在科學(xué)文獻(xiàn)中已出現(xiàn)了很多分割技術(shù),基本可以分為基于圖像域的分割技術(shù)、基于物理的分割技術(shù)和基于特征空間的分割技術(shù) [18],但圖像分割過(guò)程包括前期的圖像預(yù)處理、顏色特征的選擇、圖像分割算法的設(shè)計(jì)與圖像后處理。

2.1 圖像灰度化

我們可以將灰度圖像看作是灰度值介于黑色和白色之間的圖像,或者說(shuō)是提取出不同顏色種類的不同程度的亮度值 [19]。若是對(duì)彩色圖像進(jìn)行灰度化,等價(jià)于將一幅彩色圖像轉(zhuǎn)化為灰度圖像的過(guò)程。比如大家平時(shí)接觸的黑白圖像就可以看作是灰度圖像。一般情況下,彩色圖像可以劃分為 R,G,B 三種分量(R 為紅色分量,G 為綠色分量,B 為藍(lán)色分量),將其灰度化等價(jià)于使 R,G,B 三個(gè)分量相等的過(guò)程。我們?nèi)粘I钪兴吹降膱D像擁有不同的顏色是因?yàn)閳D像的每一個(gè)像素點(diǎn)的灰度值是不同的,灰度值最大值為 255,顯示為白色,灰度值最小值為 0,顯示為黑色,灰度圖像每個(gè)像素點(diǎn)都有其對(duì)應(yīng)的灰度值,大小在 0 ~ 255 之間?;叶然慕?jīng)典算法主要包括分量法、最大值法及加權(quán)平均法。

2.2 圖像平滑

若存在僅僅有一幀帶有噪聲的圖像,用以上方法則無(wú)法消除噪聲,由噪聲的特點(diǎn)可知其灰度與周圍灰度間存在明顯的灰度差,即我們所說(shuō)的視覺(jué)障礙,因此圖像平滑(Image Smoothing)將是一個(gè)有效的工具。

圖像平滑又稱作平滑或者濾波,又或者平滑濾波。它屬于低頻增強(qiáng)的空間域?yàn)V波技術(shù)。圖像平滑是視頻信息處理與分析領(lǐng)域的一項(xiàng)傳統(tǒng)任務(wù),其核心內(nèi)容或者難點(diǎn)在于將邊緣部分和噪聲部分進(jìn)行區(qū)分,且僅僅去除噪聲。圖像能量具有高低頻之別,低頻部分的內(nèi)容是其有用信息的儲(chǔ)存之地,高頻部分則是噪聲以及邊緣信息的存儲(chǔ)段,因此在去除噪聲時(shí), 很容易將其邊緣信息一同消除,這就要求我們尋找一個(gè)適當(dāng)?shù)姆椒▽?shí)現(xiàn)在去除噪聲的同時(shí)保留圖像的邊緣部分。

圖像平滑可分為空頻域以及頻域法兩大類。我們將濾波器理解為是一個(gè)含有加權(quán)系數(shù)的窗口,當(dāng)需要濾波器進(jìn)行平滑處理時(shí),將其窗口置于圖像之上,通過(guò)該窗口即可觀察到處理得到的圖像。濾波器的種類繁多,主要包括6 種濾波方法, 即盒式濾波、均值濾波、高斯濾波、中值濾波、雙邊濾波以及引導(dǎo)濾波,其主要目的或者作用是去除圖像的噪聲以及提取出所需特征。

2.3 圖像閾值分割算法

圖像閾值分割作為圖像分割方法的一種經(jīng)典方法,具有操作簡(jiǎn)化、性能較穩(wěn)定、運(yùn)算速率高、準(zhǔn)確率高等特點(diǎn)。主要思想是基于所選擇的灰度級(jí)數(shù),從原圖像中分割出感興趣的目標(biāo)物,或者將其劃分為不同部分 [20]。在實(shí)驗(yàn)中,選取合適的閾值進(jìn)行圖像分割是實(shí)驗(yàn)的難點(diǎn),但因其計(jì)算需使用灰度值,因此使用簡(jiǎn)單高效。如果原圖像目標(biāo)與背景差異較大, 全局閾值分割法是個(gè)很好的選擇 ;反之,若兩者差異不大或多個(gè)目標(biāo)的灰度值相近,則可以選擇局部閾值或動(dòng)態(tài)閾值分割法。

針對(duì)綠色作物圖像而言,將作物與土壤背景進(jìn)行分割極其重要,它會(huì)受噪聲、光照等因素的影響。上述方法已較好地去除了部分噪聲影響,除此之外,我們還可以通過(guò)兩者間顏色、形狀及紋理的差異進(jìn)行分割。Naidu 等提出了一種利用螢火蟲(chóng)優(yōu)化算法優(yōu)化模糊熵的多級(jí)圖像閾值分割方法 [21]。伍艷蓮等 [22] 在利用改進(jìn)均值漂移算法的基礎(chǔ)上,獲取圖像顏色指數(shù)信息之后,將其與空間信息進(jìn)行結(jié)合,最后進(jìn)行 Otsu 閾值分割。閾值分割流程如圖 1 所示。

3 實(shí)驗(yàn)分析

本次實(shí)驗(yàn),使用苗期小麥作為實(shí)驗(yàn)?zāi)繕?biāo),首先對(duì)圖像進(jìn)行灰度處理?;叶忍幚淼娜N方法效果如圖 2 ~圖 4 所示??梢园l(fā)現(xiàn),對(duì)于本實(shí)驗(yàn)而言,使用加權(quán)平均法較好,但在大多數(shù)情況下,我們選擇系統(tǒng)自帶灰度函數(shù)進(jìn)行灰度化處理。圖像經(jīng)過(guò)灰度化、平滑等技術(shù)去除噪聲之后,使用閾值進(jìn)行分割,其結(jié)果如圖 5 所示。

圖 1 閾值分割流程

圖2 平均值法圖3 加權(quán)平均法

圖4 最大值法圖5 小麥閾值分割結(jié)果

4 結(jié) 語(yǔ)

圖像分割算法眾多,基于閾值的圖像分割算法因?yàn)槠涓咝У倪\(yùn)算過(guò)程以及簡(jiǎn)單的操作被廣泛應(yīng)用到各個(gè)領(lǐng)域,但同時(shí)也存在不足,若是目標(biāo)物與背景差異較小或者兩者灰度范圍重疊,則會(huì)發(fā)生過(guò)分割或者欠分割的情況 ;另外因其僅僅考慮灰度信息,抗噪性能差,從而導(dǎo)致其邊緣信息分割效果較差。總之,對(duì)于如何從復(fù)雜的背景之下獲取農(nóng)田作物的算法眾多,而選擇基于圖像識(shí)別技術(shù)進(jìn)行提取,對(duì)圖像目標(biāo)識(shí)別的精確度或者及時(shí)性要求較高,因此如何快速對(duì)綠色作物進(jìn)行精準(zhǔn)分割仍然是學(xué)術(shù)界研究的難點(diǎn)所在。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開(kāi)發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來(lái)越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來(lái)越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開(kāi)幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉