關(guān)于RTD溫度測(cè)量系統(tǒng)應(yīng)用解析
通常通過與傳感器直接接觸來測(cè)量溫度,例如通過將傳感器浸入到液體中或通過與機(jī)器的表面接觸來測(cè)量溫度。除熱敏電阻和熱電偶之外,由于其快速響應(yīng)時(shí)間和高達(dá)幾百µV/°C的出色靈敏度,電阻溫度檢測(cè)器(RTD)尤其適用。它們也可用于–200°C至+800°C超寬范圍內(nèi)的測(cè)量,且具有近線性行為。RTD提供多種版本,例如2線、3線或4線版本,且具有高度應(yīng)用靈活性。
為了產(chǎn)生測(cè)量電壓,RTD需要激勵(lì)電流。根據(jù)RTD類型,電壓電平從幾十到幾百mV不等。測(cè)量系統(tǒng)的精度不僅取決于溫度傳感器,還取決于選擇合適的測(cè)量儀器、系統(tǒng)配置以及測(cè)量電路類型。根據(jù)導(dǎo)線數(shù)量,RTD傳感器可用于2線、3線或4線測(cè)量電路。這些不同測(cè)量電路的對(duì)比如圖1所示。
在2線測(cè)量電路中,為RTD提供激勵(lì)電流(I)的兩根導(dǎo)線也用于測(cè)量傳感器電壓。由于傳感器電阻很低,即使是較低的導(dǎo)線電阻,RL也會(huì)產(chǎn)生相對(duì)較高的測(cè)量不精確性。在3線或4線測(cè)量系統(tǒng)中,由于傳感器激勵(lì)通過單獨(dú)的導(dǎo)線發(fā)生,并且傳感器的測(cè)量導(dǎo)線直接放置在通常具有高阻抗的測(cè)量器件輸入端上,可最大限度降低此誤差。
遺憾的是,由于RTD上的壓降較低,信號(hào)非常容易受到噪聲的影響。因此,應(yīng)盡可能避免使用較長的測(cè)量導(dǎo)線??赏ㄟ^將電壓放大盡可能靠近信號(hào)源或RTD來降低噪聲。此外,具有良好信噪比(SNR)的敏感型模數(shù)轉(zhuǎn)換器(ADC)適用于進(jìn)一步的數(shù)據(jù)處理。ADI公司的∑-Δ ADC,如AD7124系列,提供一款完成集成的
24位、低噪聲模擬前端(AFE),非常適合高精度測(cè)量應(yīng)用。輸入可以選擇性地配置為差分輸入或單端/偽差分輸入。AD7124系列還集成了數(shù)字濾波器和可編程放大器級(jí),使其非常適合低壓應(yīng)用。圖2所示電路為使用AD7124的4線測(cè)量配置示例。
圖1. 2線、3線和4線測(cè)量對(duì)比
AD7124上的模擬引腳AIN2和AIN3配置為差分輸入且用于測(cè)量RTD電壓。RTD激勵(lì)電流從模擬電源電壓AVDD汲取,并通過AIN0提供。激勵(lì)電流同時(shí)流過基準(zhǔn)電阻RREF1,作為精密電阻工作,然后會(huì)導(dǎo)致通過基準(zhǔn)引腳REFIN1(+)和REFIN1(–)檢測(cè)到的壓降。所造成的壓降與RTD上的壓降成正比。此比率式配置確保激勵(lì)電流的變化對(duì)系統(tǒng)總體精度沒有影響。由于ADC的有源內(nèi)部模擬緩沖器,RREF2會(huì)產(chǎn)生正常運(yùn)行所需的失調(diào)電壓。在模數(shù)轉(zhuǎn)換之前,需要緩沖器對(duì)讀數(shù)進(jìn)行濾波,從而提供抗混疊特性并降低噪聲?;蛘?,也可以將所有模擬輸入和基準(zhǔn)輸入與分立RC濾波器相連。在使用AD7124開始簡單測(cè)量之前,校準(zhǔn)測(cè)量系統(tǒng)(零電平和滿量程校準(zhǔn))可最大限度降低增益和偏置誤差。