當(dāng)前位置:首頁 > 消費(fèi)電子 > 消費(fèi)電子
[導(dǎo)讀]摘 要:本文提出了一種低導(dǎo)通損耗的USB 電源開關(guān)的設(shè)計(jì)方案。該方案中的電路采用自舉電荷泵為N 型功率管提供足夠高的柵壓, 以降低USB 開關(guān)的導(dǎo)通損耗。在過載情況下, 過流

摘 要:本文提出了一種低導(dǎo)通損耗的USB 電源開關(guān)的設(shè)計(jì)方案。該方案中的電路采用自舉電荷泵為N 型功率管提供足夠高的柵壓, 以降低USB 開關(guān)的導(dǎo)通損耗。在過載情況下, 過流保護(hù)電路能將輸出電流限制在0. 3 A.

1 引言

通用串行總線( Universal Serial Bus) 使PC 機(jī)與外部設(shè)備的連接變得簡單而迅速, 隨著計(jì)算機(jī)以及與USB 相關(guān)便攜式設(shè)備的發(fā)展, USB 必將獲得更廣泛的應(yīng)用。由于USB 具有即插即用的特點(diǎn), 在負(fù)載出現(xiàn)異常的瞬間, 電源開關(guān)會(huì)流過數(shù)安培的電流, 從而對(duì)電路造成損壞。

本文方案中所設(shè)計(jì)的USB電源開關(guān)采用自舉電荷泵, 為N 型功率管提供2 倍于電源的柵驅(qū)動(dòng)電壓。在負(fù)載出現(xiàn)異常時(shí), 過流保護(hù)電路能迅速限制功率管電流,以避免熱插拔對(duì)電路造成損壞。

2 USB 開關(guān)電路方案設(shè)計(jì)的整體思路

圖1 為USB 電源開關(guān)方案的整體設(shè)計(jì)。其中, V IN為電源輸入, VOUT 為USB 的輸出。在負(fù)載正常的情況下, 由電荷泵產(chǎn)生足夠高的柵驅(qū)動(dòng)電壓, 使NHV1 工作在深線性區(qū), 以降低從輸入電源( VIN )到負(fù)載電壓( VOUT ) 的導(dǎo)通損耗。當(dāng)功率管電流高于1 A 時(shí), Currentsense 輸出高電平給過流保護(hù)電路( Currentlimit ) ; 過流保護(hù)電路通過反饋負(fù)載電壓給電荷泵, 調(diào)節(jié)電荷泵輸出( VPUMP ) , 從而使功率管的工作狀態(tài)由線性區(qū)變?yōu)轱柡蛥^(qū), 限制功率管電流,達(dá)到保護(hù)功率管的目的。當(dāng)負(fù)載恢復(fù)正常后, Currentsense 輸出低電平, 電荷泵正常工作。

圖1 USB 電源開關(guān)原理圖

3 電荷泵設(shè)計(jì)

圖2 為一種自舉型( Self-BooST ) 電荷泵的電路原理圖。圖中,Φ為時(shí)鐘信號(hào), 控制電荷泵工作。初始階段電容, C1 和功率管柵電容CGAte 上的電荷均為零。當(dāng)Φ為低電平時(shí), MP1 導(dǎo)通, 為C1 充電, V1電位升至電源電位, V 2 電位增加, MP2 管導(dǎo)通。假設(shè)柵電容遠(yuǎn)大于電容C1 , V 2 上的電荷全部轉(zhuǎn)移到柵電容C GATE 上。當(dāng)Φ為高電平時(shí), MN1 導(dǎo)通, 為C1 左極板放電, V1 電位下降至地電位, V2 電位下降, MP2 管截止, MN2 管導(dǎo)通, 給電容C1 右極板充電至V IN .在Φ的下個(gè)低電平時(shí), V1 電位升至電源電位, V2 電位增加至2 VIN , MP2 管導(dǎo)通, VPUMP 電位升至2 V IN - VT .

圖2 自舉電荷泵原理圖

自舉電荷泵不需要為MN2 和MP2 提供柵驅(qū)動(dòng)電壓, 控制簡單, 但輸出電壓會(huì)有一個(gè)閾值損失。圖3 是改進(jìn)后的電荷泵電路圖, Φ1 和Φ2 為互補(bǔ)無交疊時(shí)鐘。由MN2、MN5、MP3、MP2 和電容C2 組成的次電荷泵為MN4、MP4 提供柵壓, 以保證其完全關(guān)斷和開啟。當(dāng)Φ1 為低電平時(shí), MP1 導(dǎo)通,電位增加, 此時(shí), V3 電位為零, MP4 導(dǎo)通, V 2 上的電荷轉(zhuǎn)移到柵電容C GAT E 上, VPUMP 電位升高。當(dāng)Φ1 為高電平時(shí), MP2 導(dǎo)通, 為C2 充電, V4 電位上升至電源電位, V 3 電位隨之上升, MP3 導(dǎo)通, V PUMP 電位繼續(xù)升高。MN3 相當(dāng)于二極管, 起單向?qū)щ姷淖饔谩?/P>

在VPUMP 電壓升高到VIN + VT 以后, MN3 隔離V3到電源的通路, 保證V3 的電荷由MP3 全部充入柵電容。這樣, C1 和C2 相互給柵電容充電, 若干個(gè)時(shí)鐘周期后, 電荷泵輸出電壓接近兩倍電源電壓。

在電荷泵輸出電壓升高的過程中, 功率管提供的負(fù)載電流逐漸上升, 避免在容性負(fù)載上引起浪涌電流( inrush current ) .

圖3 改進(jìn)后的電荷泵

4 過流保護(hù)電路設(shè)計(jì)

當(dāng)出現(xiàn)過載和短路故障時(shí), 負(fù)載電流達(dá)到數(shù)安培, 需要精確的限流電路為功率管和輸入電源提供保護(hù)。對(duì)于MOS 器件, 只有工作在飽和區(qū)時(shí)的電流容易控制。限流就是通過反饋負(fù)載電壓, 調(diào)節(jié)電荷泵輸出電壓來實(shí)現(xiàn)的。圖4 是限流電路的原理圖。

圖4 限流電路原理圖

N 型功率管NHV 的源與P 型限流管MP6 的柵相接, N 型功率管NHV 的柵與P 型限流管MP6的源相接。從而達(dá)到控制功率管柵源壓降的目的。

當(dāng)負(fù)載電流超過1A 時(shí), 電流限信號(hào)( VLIMIT ) 為高電平, MN7 導(dǎo)通, 柵電荷經(jīng)MP6 流向地, 柵電壓減小, 功率管工作在飽和區(qū)。C1、C2 為電荷泵電容值,在一個(gè)時(shí)鐘周期T 內(nèi), 由電荷泵充入的柵電荷為:

當(dāng)功率管柵壓穩(wěn)定時(shí), 電荷泵充入的柵電荷等于限流管放掉的柵電荷。限流管泄放電流為:

得功率管和限流管的電流關(guān)系:

式中, VTP 和VTN 分別是P 型管和N 型管閾值電壓, M 為N 型功率管的并聯(lián)數(shù)。

通過設(shè)置NHV 和MP6 寬長比、功率管的并聯(lián)個(gè)數(shù)、電荷泵的時(shí)鐘周期以及電荷泵的電容值, 就可以確定功率管的電流。當(dāng)負(fù)載恢復(fù)正常后, 電流限信號(hào)( V LIMIT ) 為低電平, MN7 截止, 電荷泵正常工作, 為功率管提供2 倍于電源的柵驅(qū)動(dòng)電壓。這種過流保護(hù)電路通過MP6 泄放功率管的柵電荷, 易實(shí)現(xiàn)限流功能, 適用于N 型功率管的電源開關(guān)。

5 仿真結(jié)果與討論

圖5 為負(fù)載正常情況下負(fù)載輸出電壓和功率管電流的仿真波形。電源電壓為5 V, C1、C2 電容值為1 pF, 時(shí)鐘周期為40 s, NHV 和MP6 寬長比的比值為300, 功率管的并聯(lián)個(gè)數(shù)為1 103.采用0. 6 m30 V BCD 工藝, 在典型條件下, 用HSPICE 對(duì)整體電路仿真。由波形可以看出, 在1 ms 內(nèi), 負(fù)載輸出電壓逐漸上升, 功率管電流沒有過沖, 啟動(dòng)時(shí)間為1. 7 ms.3 ms 后, 功率管完全開啟, 為負(fù)載提供電源。

圖5 啟動(dòng)時(shí)功率管電流和負(fù)載輸出電壓

表1 為限流電路工作時(shí)功率管的平均柵電壓和平均電流。圖6 為USB 開關(guān)啟動(dòng)8 ms 后負(fù)載短路到恢復(fù)正常的仿真結(jié)果。U SB 開關(guān)在負(fù)載正常情況下啟動(dòng), 8 ms 后負(fù)載短路, 負(fù)載電流過沖到3. 1A.當(dāng)過流保護(hù)電路工作后, 過流保護(hù)電路將電流限制在0. 3 A, 保護(hù)了U SB 端口。16 ms 后, 負(fù)載恢復(fù)正常, 電源開關(guān)重新啟動(dòng)。

表1 限流時(shí)功率管平均柵電壓和平均電流

圖6 USB 開關(guān)在啟動(dòng)、限流和恢復(fù)正常過程中, 電荷泵輸出電壓、負(fù)載輸出電壓和功率管電流的仿真波形

6 結(jié)論

本文提出了一種滿足USB 規(guī)范的電源開關(guān)設(shè)計(jì)方案。一種結(jié)構(gòu)簡單的自舉電荷泵為N 型功率管提供柵驅(qū)動(dòng)電壓, 以降低開關(guān)的導(dǎo)通損耗。精確的限流電路針對(duì)過載和短路故障, 對(duì)輸入電源提供保護(hù)。仿真結(jié)果表明, 在負(fù)載短路瞬間, 限流電路能夠有效地減小過沖電流, 并能把電流限制在0. 3 A, 達(dá)到保護(hù)USB 端口的目的,進(jìn)而證實(shí)了該方案的實(shí)用性。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉