功率轉(zhuǎn)換器的光耦合器及反饋回路
設(shè)計(jì)功率轉(zhuǎn)換器的挑戰(zhàn)
主要原因之一即在于電路板的空間有限。若要縮小轉(zhuǎn)換器的外型尺寸,就必須提高頻率。這樣做能夠使用較小的元件。通過(guò)將切換頻率提高及讓轉(zhuǎn)換器的實(shí)體尺寸縮小,整體的效率需求也會(huì)提高。
輸出電壓降低時(shí),功率級(jí)會(huì)增加,讓負(fù)載的頻率速度得以加快,這會(huì)造成輸出電流量提高。當(dāng)負(fù)載以較高的頻率動(dòng)態(tài)變化,控制回路必須保持不變。即使采用所有這些節(jié)省空間的規(guī)劃,未來(lái)在功率轉(zhuǎn)換器的設(shè)計(jì)上仍有其他挑戰(zhàn)。
其中一項(xiàng)挑戰(zhàn)是控制回路。若要處理更高的負(fù)載動(dòng)態(tài)(load dynamics),并善用更小的元件優(yōu)勢(shì),就需要更快速的控制回路。對(duì)于過(guò)去較慢的切換頻率來(lái)說(shuō),3kHz的范圍已經(jīng)夠好了,但當(dāng)切換頻率增加到200kHz以上,設(shè)計(jì)人員就會(huì)需要在比3kHz范圍還大很多的頻率下交越0dB增益點(diǎn)。對(duì)于最不理想的線路及負(fù)載條件,200kHz供應(yīng)的上限(根據(jù)可接受的理論值)為40kHz。
以此相對(duì)較高的頻率交越0dB增益,可讓設(shè)計(jì)人員使用較小的輸出電容,即使較高動(dòng)態(tài)負(fù)載出現(xiàn)變化也是這樣。這是因?yàn)楫?dāng)增益交越(gain crossover)提高,轉(zhuǎn)換器的響應(yīng)會(huì)加快,而且輸出電容不需要在負(fù)載瞬時(shí)期間長(zhǎng)時(shí)間保持電壓??刂齐娐窌?huì)調(diào)整傳輸功率,以補(bǔ)償及控制輸出電壓,而且不需要仰賴(lài)輸出電容來(lái)對(duì)負(fù)載或線路瞬時(shí)進(jìn)行控制。此外,磁性元件因?yàn)榍袚Q頻率增加而縮小,因此節(jié)省更多的空間。
當(dāng)然,其中也有一些缺點(diǎn)。使用傳統(tǒng)的電路時(shí),切換耗損會(huì)增加,不過(guò),設(shè)計(jì)更精良的元件已大幅減少切換耗損。
使用準(zhǔn)諧振拓樸,例如含UCC3895之類(lèi)控制器的相移全橋式拓樸,有助于減少切換耗損。在許多設(shè)計(jì)中,二次側(cè)的同步切換所產(chǎn)生的效用相當(dāng)顯著。
磁性元件、開(kāi)關(guān)及輸出電容都會(huì)以頻率函數(shù)關(guān)系來(lái)影響控制對(duì)輸出的增益。反饋控制有其本身的挑戰(zhàn),而且反饋電路的寄生電容是更為重要的因素。
在這些較高的頻率下,寄生電容成為一大問(wèn)題。進(jìn)行低頻率切換時(shí),0dB交越約在5kHz或5kHz以下的頻率附近,而反饋回路中的寄生電容主要與配置有關(guān)。然而,當(dāng)進(jìn)行30kHz交越設(shè)計(jì)時(shí),會(huì)有其他因素造成問(wèn)題,其中一項(xiàng)因素便是本文的主題。
最近筆者在一個(gè)轉(zhuǎn)換器上遭遇到這個(gè)特殊的問(wèn)題,這個(gè)轉(zhuǎn)換器以400kHz運(yùn)作,并且采用一次側(cè)使用控制IC(UCC3895)而二次側(cè)感應(yīng)輸出的相移設(shè)計(jì)。
設(shè)計(jì)人員當(dāng)初使用光耦合器來(lái)跨越一次側(cè)對(duì)二次側(cè)的隔離阻障,一開(kāi)始似乎一切都已經(jīng)考慮周詳,不過(guò),回路因?yàn)槟撤N原因而變得不穩(wěn)定,而且在維持DC設(shè)定點(diǎn)時(shí),輸出發(fā)生低程度的振蕩。
當(dāng)然我們的設(shè)計(jì)人員檢查過(guò)計(jì)算過(guò)程,但是沒(méi)有發(fā)現(xiàn)任何明顯的因素。然后,設(shè)計(jì)人員將轉(zhuǎn)換器設(shè)定為在出現(xiàn)AC鏈波的DC狀態(tài)下保持穩(wěn)定,并且開(kāi)始探究電路。
經(jīng)過(guò)一段長(zhǎng)時(shí)間的努力,發(fā)現(xiàn)雖然二次側(cè)的錯(cuò)誤放大器確實(shí)重現(xiàn)了出現(xiàn)在轉(zhuǎn)換器輸出端的漣波,并具有正確的180度相位變化,但來(lái)自光耦合器的信號(hào)卻比頻率約為35 kHz的預(yù)期相位偏移了大約45度。這足以移除交越的相位容限(phase margin),而導(dǎo)致所觀測(cè)到的振蕩。圖1顯示這三個(gè)波形。
光耦合器數(shù)據(jù)表未提及這一相移,但發(fā)現(xiàn)這樣的效應(yīng)使得設(shè)計(jì)人員想起光耦合器會(huì)在較高頻率的情況下產(chǎn)生極點(diǎn)。在查閱不同光耦合器的數(shù)據(jù)表后,并未發(fā)現(xiàn)其中提及因?yàn)轭l率作用所造成的相移。于是進(jìn)行了進(jìn)一步調(diào)查,并制作一個(gè)測(cè)試電路來(lái)檢查整個(gè)光耦合器之中增益與相位的關(guān)系。圖2顯示此電路,其中使用網(wǎng)絡(luò)分析儀來(lái)測(cè)量數(shù)據(jù)。
設(shè)計(jì)人員使用圖2顯示的電路進(jìn)行第一次測(cè)試,然后針對(duì)通過(guò)電阻器時(shí)所產(chǎn)生的相位和增益,繪制出相關(guān)于頻率的變化圖。圖3為測(cè)試的結(jié)果,而此測(cè)試在可調(diào)變的DC電源端使用的是4.3伏特的電壓。設(shè)計(jì)人員使用跨越R1和R2的電壓來(lái)建立這些相移。
圖3 光耦合器受測(cè)回路的相位和增益相關(guān)于頻率的關(guān)系圖
當(dāng)相移45度且增益下降3dB時(shí),極點(diǎn)的頻率約為35kHz,這便解釋了之前觀測(cè)到的現(xiàn)象。這個(gè)耦合器在我們關(guān)心的頻率之外,也出現(xiàn)其他復(fù)雜的極點(diǎn)與零點(diǎn),不過(guò)與此分析沒(méi)有關(guān)聯(lián),于是不加理會(huì)。
設(shè)計(jì)人員將測(cè)試電路的DC電壓增加到11V,并且重復(fù)測(cè)量類(lèi)似的結(jié)果。極點(diǎn)并未隨著光耦合器的增大電流而明顯變化。
圖4 光耦合器較高電流的相位/增益測(cè)試
接著設(shè)計(jì)人員嘗試在4kΩ電阻加上1.2nF電容,以補(bǔ)償極點(diǎn)。設(shè)計(jì)人員依序在兩個(gè)電流量重復(fù)相同的測(cè)試,而這在35kHz產(chǎn)生零點(diǎn),有助于補(bǔ)償光耦合器的極點(diǎn)。
圖5 在35 kHz增加零點(diǎn)的結(jié)果
在這兩種情況下,這作法都能有效地移動(dòng)相移,當(dāng)頻率超過(guò)100kHz時(shí),它會(huì)跨越135度的相移點(diǎn),并在超過(guò)200kHz時(shí),其增益會(huì)維持在大于3dB以上。
然后設(shè)計(jì)人員對(duì)功率轉(zhuǎn)換器嘗試相同的程序,接著在轉(zhuǎn)換器的光耦合器電路中增加零點(diǎn),使光耦合器在整個(gè)線路及負(fù)載范圍保持穩(wěn)定。
結(jié)論
如果設(shè)計(jì)人員計(jì)劃在頻率超過(guò)8kHz且具有0dB交越的封閉反饋回路中使用光耦合器,必須先測(cè)試光耦合器,以了解其中的相位及增益特性。如果無(wú)法使用網(wǎng)絡(luò)分析儀,可制作如圖6所示的簡(jiǎn)易電路。這有助于設(shè)計(jì)人員以簡(jiǎn)易的元件、具DC偏移功能的變頻信號(hào)產(chǎn)生器及電源供應(yīng)器來(lái)辨識(shí)相位及增益。
將恒定振幅AC電流信號(hào)注入LED (在整個(gè)R1測(cè)得的電壓),并且測(cè)量從光敏晶體管流出的電流(整個(gè)R2的電壓),即可通過(guò)光敏晶體管所流出電流的振幅及相對(duì)相位了解極點(diǎn)的位置。在低頻率的情況下,CTR會(huì)造成電流差異,不過(guò),只要頻率增加,通過(guò)晶體管的電流便會(huì)減少。將AC信號(hào)頻率增加到光敏晶體管AC信號(hào)振幅為其先前值一半的程度時(shí),即可辨識(shí)出極點(diǎn)頻率。通過(guò)這項(xiàng)信息,即可計(jì)算出需要哪些元件才能在反饋回路增加零點(diǎn)。
圖6 測(cè)試電路示意圖
如果這些結(jié)果顯示在0dB交越前電路運(yùn)作范圍內(nèi)頻率的情況下出現(xiàn)不需要的極點(diǎn),則在連接LED電路的串聯(lián)中增加零點(diǎn)可補(bǔ)償及重新測(cè)試光耦合器。當(dāng)然,這個(gè)最終的測(cè)試是在運(yùn)作的轉(zhuǎn)換器中進(jìn)行。