當(dāng)前位置:首頁 > 電源 > 數(shù)字電源
[導(dǎo)讀]摘 要基于UCD92xx 與UCD7xxx 的非隔離數(shù)字電源,其輸出電壓在軟啟動(dòng)階段經(jīng)常出現(xiàn)“臺(tái)階”現(xiàn)象,波形不平滑,尤其是輸出電壓設(shè)定為較低值時(shí),如1.0V。這種&ldquo

摘 要

基于UCD92xx 與UCD7xxx 的非隔離數(shù)字電源,其輸出電壓軟啟動(dòng)階段經(jīng)常出現(xiàn)“臺(tái)階”現(xiàn)象,波形不平滑,尤其是輸出電壓設(shè)定為較低值時(shí),如1.0V。這種“臺(tái)階”現(xiàn)象與UCD92xx 軟啟動(dòng)的設(shè)計(jì)原理有關(guān),但完全可以通過一定的措施來優(yōu)化并最終解決。本文從UCD92xx 的環(huán)路和最小占空比寬度兩個(gè)方向進(jìn)行優(yōu)化與分析,最終取得了理想的效果。

1、軟啟動(dòng)原理及待優(yōu)化輸出電壓波形

數(shù)字電源UCD92xx 的軟啟動(dòng)是通過對(duì)參考電壓以步進(jìn)方式增加來實(shí)現(xiàn)的,整個(gè)過程是由芯片內(nèi)部的軟件自動(dòng)完成的。在一款基于UCD9224 和UCD74120 的單板上測試時(shí)發(fā)現(xiàn),其輸出電壓波形在軟啟動(dòng)階段有明顯的“臺(tái)階”現(xiàn)象,波形不平滑。

1.1 數(shù)字電源軟啟動(dòng)原理介紹

圖1 所示的是數(shù)字電源UCD92xx 的功率支路和控制支路??刂浦分饕稍赨CD92xx 芯片內(nèi)部,包含誤差生成及模數(shù)轉(zhuǎn)換,環(huán)路補(bǔ)償,PWM計(jì)算及產(chǎn)生等。其中,參考電壓(VREF)電壓的設(shè)置亦包含在控制支路。

依據(jù)軟件算法,在軟啟動(dòng)階段,VREF 每100us 增加一次,直至軟啟動(dòng)完成,即輸出電壓達(dá)到最終的設(shè)定值。例如,輸出電壓設(shè)定為1.0V,軟啟動(dòng)的時(shí)間設(shè)置為4ms,則在軟啟動(dòng)階段輸出電壓每一次增加25mv,直至達(dá)到1.0V。

圖 1:數(shù)字電源功率級(jí)和控制級(jí)框圖

1.2 待優(yōu)化的輸出電壓波形

圖2 所示的是輸出電壓波形,可以觀察到在軟啟動(dòng)階段輸出電壓的波形不夠平滑,有明顯的“臺(tái)階”現(xiàn)象。

該波形是在一款基于UCD9224 和UCD74120 的參考版上測得。主要測試條件為:測試環(huán)境常溫,輸入電壓為12V,輸出電壓為1.0V,輸出端帶載20A。另外,測試時(shí),數(shù)字環(huán)路的詳細(xì)配置見下文2.4 節(jié)。

圖 2:輸出電壓波形

1.3 輸出電壓“臺(tái)階”現(xiàn)象的初步分析[!--empirenews.page--]

圖3 所示的是時(shí)間軸展開后觀察到的輸出電壓波形。通過測量可知,每經(jīng)過100us 輸出電壓增加一次,增加的幅度大約為23mV,與理論計(jì)算值25mV 基本一致。

同時(shí)也可以觀察到,輸出電壓的每一次增加都是很快的完成,而不是緩慢增加。從功率級(jí)支路上分析,這是由于占空比快速增加造成。從控制級(jí)支路分析,則原因可以初步歸結(jié)為環(huán)路過快造成的。

圖 3:輸出電壓的步進(jìn)幅度

2 數(shù)字電源模擬前端及環(huán)路

數(shù)字電源控制環(huán)路包含了模擬前端,數(shù)字環(huán)路補(bǔ)償?shù)饶K,在配置環(huán)路時(shí)需要綜合考慮。其中,數(shù)字環(huán)路還包含非線性增益模塊,使能后可以有效提升整個(gè)電源的動(dòng)態(tài)響應(yīng)性能。

2.1 數(shù)字電源模擬前端(AFE)

圖4 紅色框內(nèi)電路為數(shù)字電源模擬前端(Analog-Front End,AFE)的一部分,其增益可以設(shè)置為1,2,4,8 等四個(gè)不同的值。設(shè)置不同的增益,則ADC 的輸出精度也隨之不同,比如設(shè)置增益為4,則輸出精度為2mV;設(shè)置增益為1,則輸出精度為8mV。

在相同輸入誤差(VEAP-VEAN)的情況下,不同的AFE 增益值將直接影響環(huán)路指標(biāo)。其影響趨勢為,增益越大,環(huán)路帶寬越寬。

圖 4:數(shù)字電源的模擬前端

2.2 數(shù)字電源環(huán)路

圖5 所示的是數(shù)字電源的環(huán)路框圖。其中, 是誤差放大器的輸出,為數(shù)字信號(hào); 是環(huán)路的輸出,亦為數(shù)字信號(hào),輸入到PWM模塊。 模塊是非線性增益模塊,可以使能或禁止,下一節(jié)會(huì)進(jìn)行詳細(xì)分析。a1, a2, b0, b1, b2 是環(huán)路補(bǔ)償?shù)南禂?shù),允許用戶修改以適應(yīng)不同的功率級(jí)設(shè)計(jì)。需要說明的是,UCD92xx 內(nèi)部設(shè)計(jì)有2 套a1~b2 的參數(shù),分別用于軟啟動(dòng)階段和正常運(yùn)行階段。

圖 5:數(shù)字電源環(huán)路框圖

[!--empirenews.page--]

2.3 非線性增益

圖5 中的 模塊即為非線性增益模塊,其詳細(xì)的框圖如圖6。當(dāng)en 不超過lim0 時(shí),增益為Gin0;當(dāng)en超過Lim0 但不超過lim1 時(shí),增益為Gain1;依此類推。非線性增益模塊依據(jù)誤差放大器的輸出進(jìn)行不同程度的放大,可以有效的提升動(dòng)態(tài)響應(yīng)性能。如果Gain0設(shè)置為1,即便使能非線性增益模塊,也不會(huì)影響環(huán)路指標(biāo)。如果Gain0 由1 修改為0.75 或1.25,則會(huì)影響環(huán)路指標(biāo)。其影響趨勢為,增益越大,環(huán)路帶寬越寬。

圖 6:非線性增益模塊

2.4 數(shù)字電源環(huán)路配置

圖6 和圖7 是使用數(shù)字電源開發(fā)工具Fusion Digital Power Designer 來配置環(huán)路的軟件截圖。該工具可以模擬整個(gè)環(huán)路并給出配置之后的閉環(huán)環(huán)路指標(biāo),包括截止頻率,相位余度和增益余度,極大的方便了環(huán)路的調(diào)試和優(yōu)化。

圖6 所示的是軟啟動(dòng)時(shí)的環(huán)路配置。零極點(diǎn)的信息在“Linear Compensation”方框中,其中AFE 的Gain 設(shè)置為4×;該配置中使能了非線性增益,其Limit 值和Gain 值是允許用戶修改的。最終,整個(gè)環(huán)路的指標(biāo)為23.87KHz(截止頻率),49.33°(相位余度),11.77dB(增益余度)。

圖7 所示的是正常運(yùn)行時(shí)的環(huán)路配置。零極點(diǎn)的信息在“Linear Compensation”方框中,其中AFE 的Gain 為4×;該配置中使能了非線性增益,其Limit 值和Gain 值是允許用戶修改的。最終,整個(gè)環(huán)路的指標(biāo)為33. 7KHz(截止頻率),50.57°(相位余度),8.77dB(增益余度)。

正是采樣上述配置,輸出電壓在軟啟動(dòng)階段其波形有明顯的“臺(tái)階狀”。下面將嘗試放慢環(huán)路后,驗(yàn)證是否可以優(yōu)化軟啟動(dòng)階段的波形。

圖 7:軟啟動(dòng)環(huán)路配置 圖 8:正常運(yùn)行時(shí)的環(huán)路配置

2.5 優(yōu)化環(huán)路配置

圖9 是軟啟動(dòng)環(huán)路優(yōu)化后的軟件截圖。[!--empirenews.page--]

環(huán)路的優(yōu)化包括:1)不再使能非線性增益,同時(shí)將Gain0 由1 修改為0.5;這可以降低環(huán)路的低頻增益,最終降低環(huán)路帶寬;2)將AFE 的Gain 由4 修改為1,同樣可以降低環(huán)路帶寬。1 倍的Gain 將使AFE 的輸出的精度變差,并最終影響到輸出電壓,但考慮到軟啟動(dòng)階段對(duì)輸出電壓的精度要求略低,因此可以上述修改可以接受。

需要說明的是,為保證正常運(yùn)行時(shí)輸出電壓的性能(精度,動(dòng)態(tài)性能等),正常運(yùn)行時(shí)對(duì)應(yīng)的環(huán)路參數(shù)將保持不變。

圖 9:優(yōu)化軟啟動(dòng)環(huán)路參數(shù)

圖10 所示的是優(yōu)化環(huán)路后的輸出電壓波形,可以觀察到在軟啟動(dòng)階段的“臺(tái)階”現(xiàn)象消失,波形平滑。

圖11 是將時(shí)間軸展開后的輸出電壓波形,可以觀察到其步進(jìn)的時(shí)間依然是100us,步進(jìn)的幅度為24mV(與理論值25mV 基本一致),但每一次的步進(jìn)不再是突然增加,而是緩慢增加。因此,輸出電壓波形變得較為平滑。

圖 10:優(yōu)化后的軟啟動(dòng)波形 圖 11:展開時(shí)間抽觀察輸出電壓波形

但是,在圖10 所示的波形中可以觀察到,輸出電壓在啟動(dòng)時(shí)刻有一個(gè)正向過沖并很快回落。嚴(yán)格意義上,該過沖會(huì)影響輸出電壓波形的單調(diào)性,在一些應(yīng)用場景中是不運(yùn)行的。下文將針對(duì)該過沖進(jìn)行優(yōu)化。

3 調(diào)整最小驅(qū)動(dòng)時(shí)間進(jìn)一步優(yōu)化輸出波形

優(yōu)化環(huán)路后輸出電壓在軟啟動(dòng)階段變得較為平滑,但會(huì)存在一個(gè)明顯的過沖,需要進(jìn)行優(yōu)化。下文通過調(diào)整最小占空比寬度來消除該過沖。

3.1 數(shù)字電源軟啟動(dòng)的kick-start

圖12 中所示的是數(shù)字電源的輸出電壓軟啟動(dòng)示意圖。在開始時(shí)刻,輸出電壓有一個(gè)快速的上升,稱之為“Kick-start”。 Kick-start 的幅度是根據(jù)下面公式計(jì)算出的:

Vstart =Vin×DRIVER_MIN_PULSE × Fsw

其中,DRIVER_MIN_PULSE 是指UCD92xx 發(fā)出的最小占空比的寬度,允許用戶自行設(shè)定。[!--empirenews.page--]

圖 12:輸出電壓軟啟動(dòng)

以圖10 為例,輸出電壓Kick-start 的幅度約為185mV。其DRIVER_MIN_PULSE 設(shè)置為50ns,理論計(jì)算Kickstart的幅度為:12V×50ns×300KHz=180mV。實(shí)際值與理論值基本一致。

3.2 調(diào)整最小占空比寬度

將DRIVER_MIN_PULSE 由目前的50ns 修改為5ns,以驗(yàn)證其對(duì)輸出電壓的過沖有無改善。圖13 即為輸出電壓波形,可以觀察到過沖已經(jīng)消失,但在起始時(shí)刻,輸出電壓不再平滑。

分析原因可知,當(dāng)DRIVER_MIN_PULSE 設(shè)置為5ns 后,雖然UCD9224 可以發(fā)出寬度為5ns 的驅(qū)動(dòng)脈沖,但UCD74120 對(duì)最小占空比的寬度有要求,5ns 的寬度不足以使集成在UCD74120 內(nèi)部的buck 上管導(dǎo)通,從而造成了輸出電壓上升的不平滑。

圖 13:最小占空比寬度修改為5ns 后的輸出電壓波形

過小的DRIVER_MIN_PULSE 值會(huì)使輸出電壓在起始時(shí)刻變得不再平滑;過大的DRIVER_MIN_PULSE 的值則會(huì)帶來正向過沖。因此,需要找到一個(gè)平衡點(diǎn)。

逐步增大DRIVER_MIN_PULSE 的值,當(dāng)設(shè)置為43ns 時(shí),達(dá)到了較為理想的平衡點(diǎn),輸出電壓的波形如圖14所示,輸出不再有正向過程,而且在整個(gè)軟啟動(dòng)階段輸出電壓波形都比較平滑。

此時(shí),輸出電壓Kick-start 的幅度約為160mV。其DRIVER_MIN_PULSE 為43ns,理論計(jì)算Kick-start 的幅度為:12V×43ns×300KHz=154.8mV。實(shí)際值與理論值基本一致。

圖 14:最終優(yōu)化的輸出電壓波形

4 結(jié)論

通過修改AFE 的增益值和禁止非線性增益等措施優(yōu)化軟啟動(dòng)對(duì)應(yīng)的環(huán)路參數(shù)后,可以消除輸出電壓的“臺(tái)階”現(xiàn)象,使波形單調(diào)平滑上升。正常運(yùn)行的環(huán)路參數(shù)無需改動(dòng),保證了其較高的帶寬,從而使輸出電壓的精度和動(dòng)態(tài)響應(yīng)等指標(biāo)保持不變。[!--empirenews.page--]

通過優(yōu)化最小占空比的寬度,可以消除在kick-start 之后的正向過程,使輸出電壓波形單調(diào)平滑。

綜上兩類優(yōu)化措施,最終可以使輸出電壓波形在整個(gè)軟啟動(dòng)階段單調(diào)平滑。

5 參考文獻(xiàn)

1. UCD92xx-Design-Guide, Texas Instruments Inc., 2011

2. UCD9224 datasheet, Texas Instruments Inc., 2010

3. UCD74120 datasheet, Texas Instruments Inc., 2012

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動(dòng)力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉