DAC輸出短時毛刺脈沖干擾解決方案
在DAC基礎(chǔ)知識:靜態(tài)技術(shù)規(guī)格中,我們探討了靜態(tài)技術(shù)規(guī)格以及它們對DC的偏移、增益和線性等特性的影響。這些特性在平衡雙電阻 (R-2R) 和電阻串數(shù)模轉(zhuǎn)換器 (DAC) 的各種拓撲結(jié)構(gòu)間是基本一致的。然而,R-2R和電阻串DAC的短時毛刺脈沖干擾方面的表現(xiàn)卻有著顯著的不同。
我們可以在DAC以工作采樣率運行時觀察到其動態(tài)不是線性。造成動態(tài)非線性的原因很多,但是影響最大的是短時毛刺脈沖干擾、轉(zhuǎn)換率/穩(wěn)定時間和采樣抖動。
用戶可以在DAC以穩(wěn)定采樣率在其輸出范圍內(nèi)運行時觀察短時毛刺脈沖干擾。圖1顯示的是一個16位R-2R DAC,DAC8881上的此類現(xiàn)象。
圖1
這個16位DAC (R-2R) 輸出顯示了7FFFh – 8000h代碼變化時的短時毛刺脈沖干擾的特性。
到底發(fā)生了什么?
在理想情況下,DAC的輸出按照預期的方向從一個電壓值移動到下一個電壓值。但實際情況中,DAC電路在某些代碼到代碼轉(zhuǎn)換的過程中具有下沖或過沖特性。
這一特性在每一次代碼到代碼轉(zhuǎn)換時都不一致。某些轉(zhuǎn)換中產(chǎn)生的下沖或過沖特性會比其它轉(zhuǎn)換更加明顯。而短時毛刺脈沖干擾技術(shù)規(guī)格量化的就是這些特性。DAC短時毛刺脈沖干擾會瞬時輸出錯誤電壓來干擾閉環(huán)系統(tǒng)。
圖2顯示的是具有單突短時毛刺脈沖干擾的DAC的示例。一個電阻串DAC產(chǎn)生的通常就是這種類型的短時毛刺脈沖干擾。
圖2
單突DAC輸出短時毛刺脈沖干擾特性。
在圖2中,代碼轉(zhuǎn)換的位置是從7FFFh到8000h。如果你將這些數(shù)變換為二進制形式,需要注意的是這兩個十六進制代碼的每個位或者從1變換為0,或者從0變換為1。
短時毛刺脈沖干擾技術(shù)規(guī)格量化了這個毛刺脈沖現(xiàn)象所具有的能量,能量單位為納伏秒,即nV-sec (GI)。這個短時毛刺脈沖干擾的數(shù)量等于曲線下面積的大小。
單突短時毛刺脈沖干擾是由DAC內(nèi)部開關(guān)的不同步造成的。那是什么引起了這一DAC現(xiàn)象呢?原因就是內(nèi)部DAC開關(guān)的同步不總是那么精確。由于集成開關(guān)電容充電或放電,你能在DAC的輸出上看到這些電荷交換。
R-2R DAC產(chǎn)生兩個區(qū)域的短時毛刺脈沖干擾錯誤(圖3)。由于出現(xiàn)了雙脈沖誤差,從負短時毛刺脈沖干擾 (G1) 中減去正短時毛刺脈沖干擾 (G2) 來產(chǎn)生最終的短時毛刺脈沖干擾技術(shù)規(guī)格。
圖3
具有R-2R內(nèi)部結(jié)構(gòu)的DAC表現(xiàn)出雙突短時毛刺脈沖干擾
圖3中的代碼轉(zhuǎn)換仍然是從7FFFh至8000h。
為了理解DAC短時毛刺脈沖干擾的源頭,我們必須首先定義主進位轉(zhuǎn)換。在主進位轉(zhuǎn)換點上,最高有效位 (MSB)從低變高時, 較低的位從高變?yōu)榈?,反之亦然。其中一個此類代碼變換示例就是0111b變?yōu)?000b,或者是從1000 000b變?yōu)?111 1111b的更加明顯的變化。
有些人也許會認為這一現(xiàn)象在DAC的輸出表現(xiàn)出巨大的電壓變化時出現(xiàn)。實際上,這并不是每個DAC編碼機制都會出現(xiàn)的情況。更多細節(jié)請見參考文獻1。
圖4和圖5顯示了這種類型的毛刺脈沖對一個8位DAC的影響。對于DAC用戶來說,這一現(xiàn)象在單個最低有效位 (LSB) 步長時出現(xiàn),或者在一個5V、8位系統(tǒng)中,在19.5mV步長時出現(xiàn)。
圖4
在這個8位DAC配置中,此內(nèi)部開關(guān)有7個R-2R引腳被接至VREF,有1個R-2R引腳接地。
圖5
在這個DAC配置中,此內(nèi)部開關(guān)有1個R-2R引腳被接至VREF,有7個R-2R引腳接地。
在DAC載入代碼時,會有兩個區(qū)域產(chǎn)生輸出毛刺脈沖:同時觸發(fā)多個開關(guān)的開關(guān)同步和開關(guān)電荷轉(zhuǎn)移。
此電阻串DAC具有一個單開關(guān)拓撲。一個電阻串DAC抽頭連接到巨大電阻串的不同點。開關(guān)網(wǎng)絡(luò)不需要主進位上的多個轉(zhuǎn)換,因此,產(chǎn)生毛刺脈沖的可能進性較低。開關(guān)電荷將會產(chǎn)生一個較小的毛刺脈沖,但是與R-2R結(jié)構(gòu)DAC產(chǎn)生的毛刺脈沖相比就顯得微不足道了。
代碼轉(zhuǎn)換期間,R-2R DAC具有多個同時開關(guān)切換。任何同步的缺失都導致短時間的開關(guān)全為高電平或全為低電平,從而使得DAC的電壓輸出遷移至電壓軌。然后這些開關(guān)恢復,在相反的方向上產(chǎn)生一個單突短時毛刺脈沖干擾。然后輸出穩(wěn)定。
這些毛刺脈沖的電壓位置是完全可預計的。在使用R-2R DAC時,最糟糕的情況是毛刺脈沖誤差出現(xiàn)在所有數(shù)字位切換,同時仍然用小電壓變化進行轉(zhuǎn)換時。在這種情況下,用主進位轉(zhuǎn)換進行DAC代碼變化;從代碼1000…變換為0111…。
檢查真實DAC運行狀態(tài)
現(xiàn)在,我們已經(jīng)定義了針對短時毛刺脈沖干擾誤差的備選代碼轉(zhuǎn)換,我們可以仔細觀察一下16位DAC8881(R-2R DAC) 和16位DAC8562(電阻串DAC)的R-2R和電阻串DAC短時毛刺脈沖干擾。
在圖6中,DAC8881的短時毛刺脈沖干擾為37.7 nV-sec,而DAC8562的短時毛刺脈沖干擾為0.1 nV-sec。在這兩張圖中,x軸的刻度為500ns/div,而y軸的刻度為50mV/div。
圖6
R-2R和電阻串短時毛刺脈沖干擾性能
毛刺脈沖消失了
如果存在DAC短時毛刺脈沖干擾問題,用戶可以使用外部組件來減小毛刺脈沖幅度(圖7a),或者完全消除短時毛刺脈沖干擾能量(圖7b。)
圖7
用一階低通濾波器 (a) 或采樣/保持解決方案 (b) 來減少短時毛刺脈沖干擾誤差。
DAC之后的RC濾波器可減少毛刺脈沖幅度(圖7a)。短時毛刺脈沖干擾周期決定了適當?shù)腞C比。RC濾波器3dB的頻率比短時毛刺脈沖干擾頻率提前十倍頻。在選擇組件時需要確保電阻器的電阻值較低,否則的它將會與電阻負載一起產(chǎn)生一個壓降。由于毛刺脈沖能量從不會丟失,執(zhí)行單極低通濾波器的代價就是在穩(wěn)定時間加長的同時誤差被分布在更長的時間段內(nèi)。
第二種方法是使用一個采樣/保持電容器和放大器(圖7b)。外部開關(guān)和放大器消除了DAC內(nèi)部開關(guān)產(chǎn)生的毛刺脈沖,從而獲得較小的采樣/保持 (S/H) 開關(guān)瞬態(tài)。在這個設(shè)計中,開關(guān)在DAC的整個主進位轉(zhuǎn)換期間保持打開狀態(tài)。一旦轉(zhuǎn)換完成,開關(guān)關(guān)閉,從而在CH采樣電容器上設(shè)定新輸出電壓。當DAC準備升級其輸出時,此電容器在外部開關(guān)打開時繼續(xù)保持新電壓。這個解決方案成本較高,也會占據(jù)更多的板級空間,但能夠在不增加穩(wěn)定時間的情況下減少/消除毛刺脈沖。
結(jié)論
短時毛刺脈沖干擾是一個非常重要的動態(tài)非線性的DAC特性,你將會在器件以工作采樣率運行時遇到這個問題。但是,這只是冰山一角。影響高速電路的其它因素還有轉(zhuǎn)換率和穩(wěn)定時間。請隨時關(guān)注下一篇與這一主題相關(guān)的文章。