數(shù)字電源控制器UCD3138的數(shù)字比較器與模數(shù)轉(zhuǎn)換器的應(yīng)用
掃描二維碼
隨時(shí)隨地手機(jī)看文章
數(shù)字電源控制器UCD3138 內(nèi)部集成有 4 個(gè)數(shù)字比較器,可以靈活配置其輸入端和參考值。模擬前端(AFE)模塊的絕對值量和EADC 的輸出都可以作為數(shù)字比較器的輸入,因此使用數(shù)字比較器可以實(shí)現(xiàn)對系統(tǒng)輸出電壓的故障響應(yīng)與保護(hù)。UCD3138 內(nèi)部集成有 16 個(gè)模數(shù)轉(zhuǎn)換器(ADC),其中名稱為 ADC15 的模數(shù)轉(zhuǎn)換器不對外部開放,可以用來檢測 3 個(gè)AFE 模塊中任何一個(gè)的 EAP 或 EAN 引腳,實(shí)現(xiàn)對系統(tǒng)輸出電壓的精確采集,最終可以實(shí)現(xiàn)對輸出電壓的故障響應(yīng)與保護(hù)。
1、UCD3138 的數(shù)字比較器
UCD3138 內(nèi)部集成有4數(shù)字比較器,可以以AFE 的絕對值量或者誤差值為輸入端,靈活配置參考值,最終實(shí)現(xiàn)對系統(tǒng)輸出電壓故障(過壓,欠壓等)的快速響應(yīng)與保護(hù)。
1.1 數(shù)字比較器的硬件電路簡介
圖 1 所示的是UCD3138 芯片內(nèi)部模擬前端(Analog Front End,AFE)的框圖。輸出電壓在分壓后以差分信號的方式進(jìn)入到AFE 模塊,與參考電壓(DAC0 的輸出值)比較后得到誤差信號(模擬量);該誤差信號在模數(shù)轉(zhuǎn)換后變?yōu)閿?shù)字量,然后輸入到數(shù)字環(huán)路補(bǔ)償模塊(Filter)。
Figure 1. UCD3138 AFE 模塊框圖
為豐富應(yīng)用的靈活性,用戶設(shè)置的參考值(數(shù)字量)與EADC 的輸出值(數(shù)字量)相加后生成一個(gè)叫做“ 絕對值量(absolute value)” 的數(shù)字信號,可以表征實(shí)際采集到的電壓信息(即Vd 的值)。
UCD3138 的數(shù)字比較器就是以數(shù)字誤差信號(B 點(diǎn)值)或絕對值量(C 點(diǎn)值)作為一個(gè)輸入端,參考電壓值(用戶可以自行設(shè)置)為另一個(gè)輸入端所組成,觸發(fā)后可以配置其關(guān)斷任何一路DPWM。
UCD3138 中有3 個(gè)AFE 模塊,同樣地,也有4 個(gè)數(shù)字比較器。
1.2 數(shù)字比較器涉及的關(guān)鍵寄存器
1.2.1 EADC的輸出
EADC 的輸出是參考電壓與輸入模擬量相減后的值在數(shù)字化之后的信息量,即數(shù)字誤差量,其范圍與AFE 自身的增益有直接關(guān)系。例如,當(dāng)增益值設(shè)置為1 時(shí),其輸出范圍是+248~-256;而增益設(shè)置為8 時(shí),輸出范圍是+31~-32.
寄存器EADCRAWVALUE 的第0~8 位(共9bit,名稱為RAW_ERROR_VALUE)保存的即為EADC 的輸出,分辨率為1mV/bit。
1.2.2 DAC的輸入
DAC 的輸出即為系統(tǒng)的參考電壓。在UCD3138 的實(shí)際應(yīng)用中,用戶可以設(shè)置DAC 的輸入值,為數(shù)字信號量。寄存器EADCDAC 的第4~13 位(共10bit,名稱為DAC_VALUE)保存了用戶的設(shè)置值。分辨率為1.5625mV/bit。
1.2.3 絕對值量
寄存器 EADCVALUE 的第16~25 位(共10bit,名稱為ABS_VALUE)保存的就是絕對值量,分辨率為1.5625mV/bit。
上文提到,絕對值量是EADC 的輸出信息與DAC 的輸入信息相加得到的,但并不是二者數(shù)字量的直接相加,因?yàn)槠浞直媛什煌?。事?shí)上,上述三個(gè)數(shù)字量所各自表征的模擬量存在等式關(guān)系。
例如,某條件下,EADC 的輸出(ERROR_VALUE)為192;DAC 的輸入為747;絕對值量(ABS_VALUE)為624,如下圖2 所示。
Figure 2. Memory Debugger 中讀取到的寄存器值
顯然,747-624=123≠ 192。但是,各自的模擬量則滿足等式關(guān)系,如下:
? EADC 的輸出192 對應(yīng)的模擬量為192×1mV/bit=192mV;
? DAC 的輸入747 對應(yīng)的模擬量為 747×1.5625mV/bit=1167.1875mV;
? 絕對值量624 對應(yīng)的模擬量為 624×1.5625mV/bit=975mV;
◎ 最終,1167.1875-975=192.1875≈ 192.
或者,三個(gè)數(shù)字量可以在增加衰減系數(shù)后存在如下等式關(guān)系:
1.3 數(shù)字比較器的軟件配置
在程序初始化階段,可以完成對數(shù)字比較器的配置。以配置數(shù)字比較器0 為例,主要代碼如下:
FaultMuxRegs.DCOMPCTRL0.bit.CNT_THRESH = 1;
上述代碼配置只需觸發(fā)一次數(shù)字比較器就會(huì)產(chǎn)生一個(gè)fault。
FaultMuxRegs.DCOMPCTRL0.bit.FE_SEL = 0;
上述代碼配置數(shù)字比較器的輸入為AFE0 的絕對值量。也可以配置為EADC 的輸出。另外,其余兩個(gè)AFE 的絕對值量和EADC 的輸出也可以配置為數(shù)字比較器0 的輸入。
FaultMuxRegs.DCOMPCTRL0.bit.COMP_POL = 1;
上述代碼配置為數(shù)字比較器的輸入高于參考量后才會(huì)觸發(fā)。
FaultMuxRegs.DCOMPCTRL0.bit.THRESH = 850;
參考量設(shè)置為850。如果輸入量選擇為絕對值量,則當(dāng)Vd 電壓大于850×1.5625mV/bit =1.33V 時(shí)便會(huì)觸發(fā)數(shù)字比較器。
FaultMuxRegs.DPWM0FLTABDET.bit.DCOMP0_EN=1;
上面代碼配置為,數(shù)字比較器觸發(fā)后立即關(guān)斷DPWM0A 和DPWM0B。
1.4 數(shù)字比較器的實(shí)際應(yīng)用結(jié)果
實(shí)際調(diào)試時(shí),圖1 的Vd 處外接一個(gè)可調(diào)電壓,并由0V 慢慢增大??梢杂^察到,當(dāng)電壓超過1.33V 后,驅(qū)動(dòng)信號便立即被關(guān)閉,符合預(yù)期,如下圖3(CH3 為Vd 電壓,CH2 為DPWM0B)。
Figure 3. 數(shù)字比較器觸發(fā)后關(guān)閉DPWM0B
1.5 數(shù)字比較器的實(shí)際應(yīng)用結(jié)果
實(shí)際應(yīng)用中需要注意EADC 的飽和問題。
上文1.2 節(jié)提到,EADC 的輸出有一定的范圍,當(dāng)輸入過大或過小時(shí),EADC 的輸出會(huì)固定在其上限或下限,此時(shí)便是EADC 處于了飽和狀態(tài)。仍以上面提到的實(shí)驗(yàn)為背景進(jìn)行說明,其中AFE的增益設(shè)置為1。
當(dāng) Vd 電壓為554mV 時(shí),絕對值量預(yù)計(jì)為355(因?yàn)?54/1.5625≈ 355),EADC 的輸出預(yù)計(jì)為613(參考1.2 節(jié)最后的等式)。而實(shí)際讀取發(fā)現(xiàn),絕對值量為588,EADC 的輸出為248,這與設(shè)想完全不同。分析原因可知,此時(shí)EADC 已經(jīng)處于了正向飽和,輸出的上限為248。
Figure 4. EADC 正向飽和
同樣地,當(dāng) Vd 電壓為1.64V 時(shí),絕對值量預(yù)計(jì)為1050(因?yàn)?640/1.5625≈ 1050),EADC 的輸出預(yù)計(jì)為-473(參考1.2 節(jié)最后的等式)。而實(shí)際讀取發(fā)現(xiàn),絕對值量為911,EADC 的輸出為-256,這與設(shè)想也是完全不同。分析原因亦可知,此時(shí)EADC 已經(jīng)處于負(fù)向飽和,輸出的下限為-256。
Figure 5. EADC 負(fù)向飽和
綜合上面分析可知,在DAC 的值固定后,絕對值量存在一個(gè)范圍,該范圍與AFE 的增益有直接關(guān)系,如下表所示。
Table 1. 絕對值量范圍和AFE 增益的關(guān)系
AFE GainDAC ValueEADC ValueAbsolute Value
1x+248 to -256(x-159) to (x+164)
2x+124 to -128(x-79) to (x+82)
4x+62 to -64(x-40) to (x+41)
8x+31 to -32(x-20) to (x+20)
可以觀察到,如果AFE 的增益設(shè)置為8,DAC 的值為747 時(shí),絕對值的范圍是727~767。此時(shí),如果計(jì)劃讓數(shù)字比較器在Vd 為1.33V 時(shí)觸發(fā),則其參考值需要設(shè)置為850。然而,數(shù)字比較器的另一端(輸入為絕對值)最大僅為767,因此數(shù)字比較器將沒有機(jī)會(huì)被觸發(fā)。
實(shí)際應(yīng)用中,設(shè)置數(shù)字比較器的參考值時(shí)需要考慮AFE 的增益,以防止因EADC 提前飽和導(dǎo)致其輸出被鉗制而無法觸發(fā)數(shù)字比較器。
2、UCD3138 的內(nèi)部模數(shù)轉(zhuǎn)換器ADC15
UCD3138 芯片內(nèi)部共有16 個(gè)模數(shù)轉(zhuǎn)換器,其中ADC15 可以在芯片內(nèi)部連接到AFE 模塊的EAP或EAN 引腳。實(shí)際應(yīng)用中,ADC15 可以用來檢測系統(tǒng)的反饋電壓,在軟件中可以還原出實(shí)際的輸出電壓。
2.1 ADC15 的配置
UCD3138 芯片內(nèi)部的ADC15 可以連接到任意一個(gè)AFE 模塊的EAP 或EAN 引腳,完成模擬信號的數(shù)字化。在應(yīng)用時(shí),與其它ADC 的配置方式非常相似,唯一的差別是需要配置ADC15 到指定的AFE。
下面三行代碼是完成ADC15 與AFE 的關(guān)聯(lián)。其中,AFE_MUX_CH_SEL 為1 是指ADC15 連接到AFE0;AFE_VIN_MUX 為0 是指ADC15 連接到EAP 引腳。
MiscAnalogRegs.AFECTRL.bit.AFE_MUX_SEL=3;
MiscAnalogRegs.AFECTRL.bit.AFE_VIN_MUX=0;
MiscAnalogRegs.AFECTRL.bit.AFE_MUX_CH_SEL=1;
綜合上述配置,ADC15 是連接到了AFE0 的EAP 引腳,即可以檢測圖1 中的Vd 電壓。
2.2 實(shí)驗(yàn)結(jié)果
如圖 4,當(dāng)Vd 為554mV 時(shí),ADC15 的結(jié)果(adc_values.Vout)為902。二者近似符合下面的等式:
如圖5,當(dāng)Vd 為1.64V 時(shí),ADC15 的結(jié)果(adc_values.Vout)為2681。二者近似符合下面的等式:
上述物理值與數(shù)字量之間的差別,主要是測量誤差導(dǎo)致。
3、UCD3138 的內(nèi)部模數(shù)轉(zhuǎn)換器ADC15
UCD3138 芯片內(nèi)部的數(shù)字比較器和模數(shù)轉(zhuǎn)換器ADC15 都可以用來處理與輸出電壓相關(guān)的工作。
其中,數(shù)字比較器配置之后可以實(shí)現(xiàn)對輸出電壓過壓或欠壓等的快速響應(yīng)與保護(hù);ADC15 配置之后可以精確的采集輸出電壓信息,然后借助軟件設(shè)計(jì)同樣可以實(shí)現(xiàn)對輸出電壓的故障保護(hù)。
4、參考文獻(xiàn)
1. UCD3138 datasheet, Texas Instruments Inc.
2. UCD31xx Fusion Digital Power Peripherals Programmer’s Manual, Texas Instruments Inc.
3. UCD31xx Miscellaneous Analog Control _MAC_, Texas Instruments Inc.