當(dāng)前位置:首頁 > 嵌入式 > 嵌入式硬件

摘 要: 針對(duì)幀差法和光流法兩種運(yùn)動(dòng)目標(biāo)檢測(cè)方法,給出了相應(yīng)的細(xì)胞神經(jīng)網(wǎng)實(shí)現(xiàn)方式。采用不同視頻圖像序列進(jìn)行了仿真,結(jié)果證明了所提出方法的有效性。
關(guān)鍵詞: CNNs;運(yùn)動(dòng)目標(biāo)檢測(cè);幀差法;光流法

 運(yùn)動(dòng)目標(biāo)檢測(cè)是視頻圖像跟蹤與識(shí)別系統(tǒng)中的關(guān)鍵技術(shù),在視頻監(jiān)控、交通流量統(tǒng)計(jì)、人機(jī)交互、機(jī)器人等領(lǐng)域有著廣泛的應(yīng)用。目前常用的方法有幀差法、背景減法、光流法等,其中幀差法和背景減法適用于攝像機(jī)靜止時(shí)運(yùn)動(dòng)目標(biāo)的檢測(cè),光流法則在攝像機(jī)移動(dòng)時(shí)能夠得到較好的檢測(cè)效果。在運(yùn)動(dòng)目標(biāo)檢測(cè)的各種應(yīng)用領(lǐng)域中,對(duì)算法的實(shí)時(shí)性都有著很高的要求,因此,如何提高運(yùn)算速度以滿足實(shí)時(shí)需求是科研人員需要解決的問題。
 細(xì)胞神經(jīng)網(wǎng)絡(luò)CNNs(Cellular Neural Networks)是一種具有并行處理能力的網(wǎng)狀非線性電路模型[1],其基本單元稱為細(xì)胞。細(xì)胞結(jié)構(gòu)簡(jiǎn)單且細(xì)胞之間為局部互聯(lián),因此,方便超大規(guī)模集成電路(VLSI)實(shí)現(xiàn),研制成功的細(xì)胞神經(jīng)網(wǎng)通用機(jī)(CNN Universal Machine)已被證明具有圖靈機(jī)的計(jì)算能力[2]。作為一種面向集成電路實(shí)現(xiàn)的神經(jīng)網(wǎng)絡(luò),細(xì)胞神經(jīng)網(wǎng)很好地結(jié)合了并行計(jì)算和并行結(jié)構(gòu),具有與人眼視網(wǎng)膜相似的結(jié)構(gòu),因此用細(xì)胞神經(jīng)網(wǎng)來探索視覺計(jì)算和實(shí)時(shí)圖像處理有著重要意義。當(dāng)前細(xì)胞神經(jīng)網(wǎng)主要用于實(shí)時(shí)圖像處理領(lǐng)域,在模式識(shí)別、仿生眼、自治機(jī)器人、信息安全、高級(jí)腦功能等研究領(lǐng)域也得到了成功的應(yīng)用[3-5],并出現(xiàn)了差值控制細(xì)胞神經(jīng)網(wǎng)、模糊細(xì)胞神經(jīng)網(wǎng)、多層細(xì)胞神經(jīng)網(wǎng)、時(shí)滯細(xì)胞神經(jīng)網(wǎng)等多種形式。
 本文首先給出了CNNs的基本概念并對(duì)其穩(wěn)定性進(jìn)行了分析,然后針對(duì)運(yùn)動(dòng)目標(biāo)檢測(cè)常用的幀差法和光流法,給出了基于細(xì)胞神經(jīng)網(wǎng)的實(shí)現(xiàn)方式,最后采用不同視頻圖像序列進(jìn)行了仿真驗(yàn)證。



閾值化、濾波、空洞填充、邊緣估計(jì)、反向選擇等運(yùn)算的CNNs模板可參考文獻(xiàn)[7-8]。
4 基于CNNs的光流運(yùn)動(dòng)目標(biāo)檢測(cè)方法
 運(yùn)動(dòng)產(chǎn)生出光流,光流是運(yùn)動(dòng)信息的一個(gè)近似反映。基于光流方法的運(yùn)動(dòng)檢測(cè)采用了運(yùn)動(dòng)目標(biāo)隨時(shí)間變化的光流特性,通過計(jì)算光流并對(duì)光流圖像分割來檢測(cè)運(yùn)動(dòng)目標(biāo)。由于光流場(chǎng)中不同的物體會(huì)有不同的速度,因此,即使在攝像機(jī)存在運(yùn)動(dòng)的情況下也能檢測(cè)出獨(dú)立的運(yùn)動(dòng)目標(biāo)。光流法的缺點(diǎn)是計(jì)算方法復(fù)雜、運(yùn)算量大,因此很難應(yīng)用于實(shí)時(shí)性要求較高場(chǎng)合。本文應(yīng)用具有并行計(jì)算能力的細(xì)胞神經(jīng)網(wǎng)實(shí)現(xiàn)光流場(chǎng)的估計(jì)。
4.1 連續(xù)時(shí)間域光流計(jì)算描述
 細(xì)胞神經(jīng)網(wǎng)是在連續(xù)時(shí)間域進(jìn)行信息處理,因此首先考慮光流計(jì)算的連續(xù)時(shí)間域描述方法。若圖像中某像素m在時(shí)刻t的灰度值為I(x,y,t),令點(diǎn)m的速度為Vm=(u,v),則Horn & Schunck光流計(jì)算模型,其光流矢量通過如下方程組求解:


4.2 仿真試驗(yàn)結(jié)果
 取highway圖像序列檢驗(yàn)所提出的光流運(yùn)動(dòng)檢測(cè)方法。該圖像序列是在攝像機(jī)移動(dòng)條件下拍攝的,序列中幾乎不存在靜止對(duì)象。為得到較好檢測(cè)效果,在光流計(jì)算之后(計(jì)算運(yùn)動(dòng)矢量幅值),依次采用了濾波、閾值化、空洞填充、邊緣檢測(cè)、雜點(diǎn)取出等一系列運(yùn)算,CNNs光流法檢測(cè)結(jié)果如圖4所示。從仿真試驗(yàn)可以看出,所提出方法能夠得到正確檢測(cè)結(jié)果。

 本文針對(duì)常用的運(yùn)動(dòng)目標(biāo)檢測(cè)方法,探索了細(xì)胞神經(jīng)網(wǎng)的實(shí)現(xiàn)方式,最后采用不同視頻圖像序列進(jìn)行了仿真驗(yàn)證,結(jié)果證明了所提出方法的有效性。
參考文獻(xiàn)
[1] CHUA L O, YANG L. Cellular neural network: theory[J]. IEEE Transactions on Circuits and Systems, 1988, 35(10):1257-1272.
[2] LINAN G, ESPEJO S, DOMINGUEZ C R. ACE4K: an analog I/O 64×64 visual microprocessor chip with 7-bit analog accuracy[J]. International Journal of Circuit Theory and Applications, 2002, 30(1):89-116.
[3] BALYA D, ROSKA B, ROSKA T, et al. A CNN framework for modeling parallel processing in a mammalian retina[J]. International Journal of Circuit Theory and Applications, 2002, 30(2):363-393.
[4] ARENA P, BASILE A, FORTUNA L. CNN wave based computation for robot navigation planning[M]. Proceedings of the 2004 International Symposium on Circuits and Systems, 2004:500-503.
[5] PETRAS I, ROSKA T. Application of direction constrained and bipolar waves for pattern recognition[C]. Proceedings of the 6th IEEE International Workshop on Cellular Neural Networks and their Applications, Catania, Italy, 2000:3-8.
[6] SLAVOVA A. Applications of some mathematical methods in the analysis of cellular neural networks[J]. Journal of Computational and Applied Mathematics, 2000, 114(6): 387~404.
[7] 鞠磊,鄭德玲,翁貽方.基于細(xì)胞神經(jīng)網(wǎng)的快速圖像分割方法[J].北京工商大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,23(9):32-34,39.
[8] 鞠磊,鄭德玲,張蕾.基于差值控制細(xì)胞神經(jīng)網(wǎng)絡(luò)圖像濾波器[J].北京科技大學(xué)學(xué)報(bào),2005,27(6):375-379.

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉