當前位置:首頁 > 嵌入式 > 嵌入式教程
[導讀]嵌入式Linux系統(tǒng)的動態(tài)電源管理技術

通過用戶層制定策略與內(nèi)核提供管理功能交互,實時調(diào)整電源參數(shù)而同時滿足系統(tǒng)實時應用的需求,允許電源管理參數(shù)在短時間的空閑或任務運行在低電源需求時,可以被頻繁地、低延遲地調(diào)整,從而實現(xiàn)更精細、更智能的電源管理。

  1 動態(tài)電源管理原理

  CMOS電路的總功耗是活動功耗與靜態(tài)功耗之和。當電路工作或邏輯狀態(tài)轉換時會產(chǎn)生活動功耗,未發(fā)生轉換時晶體管漏電流會造成靜態(tài)功耗:

    式中C為電容,fc為開關頻率,Vdd為電源電壓,IQ為漏電流。C·Vdd·fc為活動功耗;VddIQ為靜態(tài)功耗。在操作系統(tǒng)級的電源管理設計實現(xiàn)中,重點是活動功耗。從中可以得出幾種管理活動功耗的方法:

  ①電壓/時鐘調(diào)節(jié)。通過降低電壓和時鐘來減少活動功耗和靜態(tài)功耗。

 ?、跁r鐘選通。停止電路時鐘,即設fc為O,讓Pactive為0。將時鐘從不用的電路模塊斷開,減少活動功耗。許多CPU都有“閑置”或“停止”指令,一些處理器還可通過門控關閉非CPU時鐘模塊,如高速緩存、DMA外設等。


 ?、垭娫垂x通。斷開電路中不使用的模塊電源供應。這種方法需要考慮重新恢復該模塊的代價。

  斷開不使用的模塊的時鐘和電源供應可以減少電源消耗,但要能夠正確預測硬件模塊的空閑時期。因為重新使能硬件模塊時鐘和電源會造成一定延遲,不正確的預測將導致性能下降。

  從式(1)可以看出:降低電壓對功耗的貢獻是2次方的;降低時鐘也可降低功耗,但它同時也降低性能,延長同一任務的執(zhí)行時間。設2.0 V高壓下的能量消耗為E高=P高·T,則1.0 V低壓下能量消耗為E低=P低·2T(實踐中頻率近似線性依賴電壓),再根據(jù)式(1)容易得到P高=8P低。綜合上式可以得出:E高=4E低,所以,選擇滿足性能所需的最低時鐘頻率,在時鐘頻率和各種系統(tǒng)部件運行電壓要求范圍內(nèi),設定最低的電源電壓,將會大量減少系統(tǒng)功耗。上例中完成任務所需的能量可以節(jié)約75%。

  2 硬件平臺對動態(tài)電源管理的支持

  通過調(diào)節(jié)電壓、頻率來減少系統(tǒng)活動功耗需要硬件支持。SoC系統(tǒng)一般有多個執(zhí)行單元,如PM(電源管理)模塊、OSC(片上晶振)模塊、PLL(鎖相環(huán))模塊、CPU核以及CPU核中的數(shù)據(jù)緩存和指令緩存,其他模塊統(tǒng)稱為外圍模塊(例如1,CD控制器、UART、SDRAM控制器等)。CPU高頻時鐘主要由PLL提供,同時PLL也為外圍模塊和SoC總線提供其他頻率時鐘。一般SoC系統(tǒng)都有一些分頻器和乘法器可以控制這些時鐘。PM模塊主要是管理系統(tǒng)的電源供應狀態(tài)。一般有自己的低頻、高準確度晶,振,用以維持一個RTC時鐘、RTC定時器和中斷控制單元。其中中斷控制單元使RTC定時器和外部設備能夠喚醒掛起的SoC系統(tǒng)。下面以一個廣泛用于手持設備的TI0MAPl610處理器為例。

 ?、贂r鐘模塊。OMAPl610提供一個數(shù)字相控鎖環(huán)(DPLL),將外頻或晶振輸入轉化為高頻,供給OMAP 3.2核以及其他片上設備。操作DPLL控制寄存器DPLLl_CTL_REG就可以設置DPLL輸出時鐘,輔以設置時鐘復用寄存器(MUX)和時鐘控制寄存器ARM_CKCTL,就能控制MPU和DSP的運行頻率,MPU、DSP外設時鐘,以及LCD刷新時鐘,TC_CK時鐘(Trafflc Control Clock)等。

 ?、陔娫垂芾砟K。OMAPl610集成一個超低功耗控制模塊(ULPD),用以控制OMAP3.2時鐘和控制OMAPl610進出多種電源管理模式。操作ULPD控制寄存器ULPD_POWER_CTRL,可以設置處理器電壓、管理運行模式。

  3 嵌入式Linux動態(tài)電源管理軟件實現(xiàn)

  嵌入式Linux已被廣泛應用在電源功耗敏感的嵌入式設備上,特別是移動手持設備;因此,設計高效、精細的電源管理技術是嵌入式Linux開發(fā)成功的關鍵技術之一。

  3.1動態(tài)電源管理實現(xiàn)原理

  系統(tǒng)運行在常見的幾種不同狀態(tài),有不同電源級別要求,其中蘊涵著豐富的節(jié)能機會。狀態(tài)轉化如圖1所示。

    ①系統(tǒng)運行在任務、任務一、任務+中的任務狀態(tài)之一,可以響應中斷進入中斷處理,可以進入空閑或睡眠狀態(tài)。不同的任務要求不同的電源級別,例如播放MP3可以降低處理器的頻率,而運行在線互動游戲時則要求處理器全速運行,所以DPM需要在不同任務中提供電源管理服務。

 ?、谙到y(tǒng)進入空閑,這時可以被中斷喚醒,處理中斷:DPM提供受管理的空閑模式,可以更智能地節(jié)省電源。

 ?、巯到y(tǒng)在中斷處理完可以進入空閑狀態(tài),或者從中斷中回到任務態(tài)。

 ?、芟到y(tǒng)在任務狀態(tài)下可進入睡眠模式。系統(tǒng)可掛起到RAM或者其他存儲器中,關閉外設,實現(xiàn)最大限度地省電。通過特定事件(例如定義UART中斷)要求系統(tǒng)退出睡眠模式。[!--empirenews.page--]

  綜上所述,可以把動態(tài)電源管理分為平臺掛起/恢復、設備電源管理以及平臺動態(tài)管理等三類。平臺掛起/恢復目標在于管理較大的、非常見的重大電源狀態(tài)改變,用于減少產(chǎn)品設備在長時間的空閑之后,減少電源消耗。設備電源管理用于關斷/恢復平臺中的設備(平臺掛起/恢復以及動態(tài)管理中均要用到);而平臺動態(tài)管理目標在于頻繁發(fā)生、更高粒度的電源狀態(tài)改變范圍之內(nèi)的管理。系統(tǒng)運行的任務可以細分為普通任務和功率受監(jiān)控的任務。

    前者電源狀態(tài)是DPM_NO_STATE,不作電源管理;后者對功率敏感,在被調(diào)度時(參見圖1)可以通過DPM來設置其電源管理狀態(tài),要求運行在不同的電源級別。本文重點描述平臺動態(tài)電源管理和設備電源管理兩類,并將設備電源管理視為動態(tài)電源管理的組成部分。

  3.2平臺動態(tài)電源管理設計

  在Linux架構下實現(xiàn)電源管理內(nèi)核模塊需要實現(xiàn)一個應用層和操作系統(tǒng)的接口,一個為多個硬件平臺提供通用電源管理邏輯控制框架的硬件無關層,以及一個管理特定硬件電源控制接口的平臺相關電源控制層。

  3.2.1 內(nèi)核模塊控制模型

  模型主要由操作點、管理類、管理策略等組成。

 ?、儆秒娫垂芾聿僮鼽c對應平臺硬件相關參數(shù)。例如,TIOMAPl610參考開發(fā)板有多個參數(shù):CPU電壓、DPLL頻率控制(通過倍頻器和分頻器兩個參數(shù))、CPU頻率控制、TC交通控制器、外部設備控制、DSP運行頻率、DSP的MMU單元頻率和LCD刷新頻率。如果使用TI的DSP代碼,則后四個參數(shù)為不可控,均使用默認值,如表1所列。

    其中,“192 MHz—1.5 V”操作點參數(shù)“1 500”表示OMAP3.2核心電壓為1 500 mV;“16”表示DPLL頻率控制12 MHz晶振輸入16倍頻;“1”表示分頻為1;“1”表示OMAP3.2核心分頻為1(所以它運行在192 MHz)“2”表示TC(交通控制器)分頻為2(所以它運行在96 MHz).

 ?、陬悾憾鄠€操作點組成一個管理類。

 ?、鄄呗裕憾鄠€或一個類組成策略。

  一般可以簡化系統(tǒng)模型,直接將DPM策略映射到一個系統(tǒng)操作狀態(tài)下特定的DPM操作點,如表2所列。復雜點系統(tǒng)可以考慮將DPM策略映射到一個多操作點的DPM管理類,再根據(jù)操作狀態(tài)切換時選擇管理類中滿足約束的第一個操作點。

    表2中策略映射到四個操作點,分別對應“sleep”、 “idle”、“task-1”、“task”四種電源狀態(tài)。除非用戶加以改變,否則系統(tǒng)fork創(chuàng)建的任務默認運行在DPM-TASK-STATE狀態(tài),對應表2中task狀態(tài),其操作點為192 MHz-1.5 V。

  通過這種結構,電源管理系統(tǒng)把系統(tǒng)創(chuàng)建的任務和具體的電源管理硬件單元參數(shù)連接起來,為任務間精細電源管理提供一個框架。

  3.2.2內(nèi)核功能實現(xiàn)

  如圖2所示,DPM軟件實現(xiàn)可以分為應用層、內(nèi)核層、硬件設備等幾個部分。其中內(nèi)核層又可以分為接口層,硬件無關層和內(nèi)核硬件相關層(圖2中虛線部分),可以分為以下幾個方面來描述。

[!--empirenews.page--]

    第一,用戶層可以通過內(nèi)核提供的sysfs文件系統(tǒng)和設備驅動模型(LDM)接口來進行電源管理。DPM實現(xiàn)還提供Proc 
接口來實現(xiàn)電源管理的命令;也可以通過增加系統(tǒng)調(diào)用接口使用戶程序更容易調(diào)用DPM功能。

  通過修改任務切換宏switch_tO,添加dpm_set_OS(task_dpm_ state)接口,然后電源管理引擎將當前任務電源狀態(tài)設置到硬件參數(shù)。

  第二,內(nèi)核硬件無關層提供電源管理邏輯控制框架。電源管理引擎主要實現(xiàn)API調(diào)用,選擇操作點,提供操作點設置的同步和異步邏輯等。

  設備電源管理模塊還實現(xiàn)設備驅動約束,通過LDM接口管理設備時鐘和電源,提供掛起和恢復控制。 設備時鐘電源關層主要對應系統(tǒng)的各種總線和設備時鐘電源參數(shù)管理。

  3.2.3 設備電源管理和驅動約束

  DPM通過LDM可以對設備進行電源管理。LDM中device_driver結構有設備掛起和恢復等回調(diào)函數(shù),device結構有驅動約束。需要在設備初始化時使用注冊函數(shù)向相應系統(tǒng)總線注冊該設備。例如,簡化后12C的LDM相關參數(shù)為:


    I2C驅動注冊到MPU公有TI外圍總線:driver_reg-ister(&omap_i2c_driver)platform_device_register(&omap_i2c_device)。在驅動程序中實現(xiàn)掛起和恢復函數(shù):omap_i2c_controller_suspen(&omap_i2c_device),omap_i2c_con-troller_resume(&omap_i2c_deviee)。這樣,所有注冊到系統(tǒng)的設備在sysfs中都有一個管理接口。
  通過這些接口可以操縱設備的電源狀態(tài)。在多種情況下,可利用該接口來掛斷設備,例如:應用程序顯式掛斷應用中不需要的設備;平臺掛起前需掛斷所有設備;當DPM將系統(tǒng)設置到設備不兼容狀態(tài)時需掛起該設備等等。其中DPM中管理設備電源狀態(tài)時還提供設備驅動約束檢查(頻率相關)。例如,當系統(tǒng)電源狀態(tài)改變,準備運行在新的操作點時,驅動約束檢查該狀態(tài)是否滿足設備正常運行。如果不滿足,且當前操作點force屬性設置為1,設備首先被LDM回調(diào)函數(shù)關斷(或將設備置于和此時PLL相應的掛起狀態(tài));如果滿足條件,則利用設備驅動中實現(xiàn)的調(diào)節(jié)函數(shù)轉到新狀態(tài)。


  驅動約束還用于限制DPM操作方式。當沒有設備被使用時,約束才允許DPM將系統(tǒng)轉到低電源空閑狀態(tài)。


  4 總 結

  DPM技術通過內(nèi)核模塊的方式實現(xiàn)任務級別電源管理、實現(xiàn)了有效的設備電源管理,滿足了嵌入式Linux的需求,補充了基于桌面系統(tǒng)APM和APCI電源管理技術的不足。實踐證明,DPM對嵌入式系統(tǒng),尤其是移動終端,能夠起到很好的節(jié)能效果。

  當然,動態(tài)電源管理系統(tǒng)還有待于進一步完善。例如:①可以根據(jù)硬件和軟件收集系統(tǒng)負載狀態(tài),使用Markov,鏈等手段準確預測電源狀態(tài),從而設計出更智能、更有效的狀態(tài)切換管理策略;②電源管理和實時性能要求之間的復雜關系還需處理等等。


本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或將催生出更大的獨角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉型技術解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關鍵字: 汽車 人工智能 智能驅動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務能7×24不間斷運行,同時企業(yè)卻面臨越來越多業(yè)務中斷的風險,如企業(yè)系統(tǒng)復雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務連續(xù)性,提升韌性,成...

關鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質量流程IT總裁陶景文發(fā)表了演講。

關鍵字: 華為 12nm EDA 半導體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權最終是由生態(tài)的繁榮決定的。

關鍵字: 華為 12nm 手機 衛(wèi)星通信

要點: 有效應對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務引領增長 以科技創(chuàng)新為引領,提升企業(yè)核心競爭力 堅持高質量發(fā)展策略,塑強核心競爭優(yōu)勢...

關鍵字: 通信 BSP 電信運營商 數(shù)字經(jīng)濟

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術學會聯(lián)合牽頭組建的NVI技術創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術創(chuàng)新聯(lián)...

關鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(集團)股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關鍵字: BSP 信息技術
關閉
關閉