當(dāng)前位置:首頁(yè) > 嵌入式 > 嵌入式教程
[導(dǎo)讀]PSoC3和PSoC5的嵌入式數(shù)字濾波技術(shù)

帶模數(shù)前端的低成本微控制器近年來得到迅速推廣,人們通常稱之為“混合信號(hào)微控制器”。當(dāng)然,賽普拉斯的 PSoC3 和新近推出的 PSoC5 器件集成了強(qiáng)大的 CPU 和業(yè)界領(lǐng)先的 ADC,其性能可超過分離式外部轉(zhuǎn)換器。不過,PSoC3 和 PSoC5 并不僅僅是一般的混合信號(hào)微控制器。傳統(tǒng)設(shè)備當(dāng)然可以將外部模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào)。數(shù)據(jù)采集進(jìn)程并不是全部目的之所在,它只是通過數(shù)據(jù)采集提取所采集數(shù)據(jù)背后含義并確定如何處理數(shù)據(jù)的一種方式。如果提取含義所需的信號(hào)處理工作量非常大的話,就會(huì)對(duì)固件工程師構(gòu)成挑戰(zhàn),因?yàn)檫@種提取工作要與一般性工作任務(wù)使用相同的處理器,而處理器在支持終端設(shè)備所需的一般性任務(wù)之外還要完成新的工作任務(wù)。

在定義關(guān)系密切的 PSoC3 和 PSoC5 系列產(chǎn)品時(shí),賽普拉斯的架構(gòu)師決定不再在競(jìng)爭(zhēng)激烈的市場(chǎng)中僅僅提供一款同質(zhì)化的產(chǎn)品。不管采取什么架構(gòu),硬件的功能都應(yīng)重點(diǎn)用于高效地實(shí)現(xiàn)有用的工作目的。我們希望 PSoC 真正成為片上可編程解決方案,能夠解決實(shí)際客戶遇到的實(shí)際問題。為了給新一代 PSoC 器件提供更強(qiáng)的解決問題的功能,我們采用了一系列獨(dú)特的外設(shè)和信號(hào)處理塊,既有模擬的,也有數(shù)字的。本文將重點(diǎn)討論這些大幅簡(jiǎn)化采集信號(hào)數(shù)字濾波工作的信號(hào)處理塊,并討論該技術(shù)已經(jīng)在其中證明自身實(shí)力的一些應(yīng)用。

嵌入式數(shù)字濾波的架構(gòu)增強(qiáng)

首先,我們?yōu)槭裁聪M褂们度胧綖V波器而不是將信號(hào)處理指令集成到普通的微控制器中呢?究其原因就是項(xiàng)目設(shè)計(jì)層面和系統(tǒng)集成層面的分區(qū)問題。在項(xiàng)目開發(fā)過程中,項(xiàng)目的規(guī)模、目標(biāo)和整體架構(gòu)經(jīng)常發(fā)生變化。單核單片式編碼項(xiàng)目要想跟上這種變化的速度,著實(shí)是一個(gè)挑戰(zhàn),尤其是目前的項(xiàng)目常常是由非集中化的多個(gè)不同設(shè)計(jì)團(tuán)隊(duì)一起完成的,這更增加了相關(guān)的難度。在塊層所使用的功能元件中嵌入信號(hào)處理,能確保項(xiàng)目管理在元件設(shè)計(jì)層面實(shí)現(xiàn)分支,同時(shí)也能確保在算法改變時(shí),信號(hào)處理負(fù)載發(fā)生的差異不會(huì)影響通信管理等時(shí)間關(guān)鍵性任務(wù)。

數(shù)字濾波器塊 (DFB) 是首款PSoC3 和 PSoC5 系列產(chǎn)品中支持嵌入式數(shù)字濾波的硬件元素,這是一款連接于外設(shè)總線的小型數(shù)字濾波器引擎。實(shí)際上,它是存儲(chǔ)器、MAC、ALU 和微代碼控制庫(kù)的緊密組合,其 VLIW 架構(gòu)能支持不同的操作,如 24 位 x 24 位到 48 位乘法和加法等能以系統(tǒng)時(shí)鐘速率并行執(zhí)行,在 PSoC3 中的頻率可高達(dá) 67MHz,而在 PSoC5 中的頻率則可達(dá) 80MHz。數(shù)據(jù)和系數(shù)存儲(chǔ)在一對(duì)專門的本地 128x24 位存儲(chǔ)器中,并能在整個(gè)系統(tǒng)總線上進(jìn)行存取。許多濾波拓?fù)涠寄茉谶@一結(jié)構(gòu)上高效編碼。

配合嵌入式數(shù)字濾波應(yīng)用 DFB 的是通用數(shù)字塊 (UDB) 陣列。它在多功能架構(gòu)中結(jié)合了 PLD 和數(shù)據(jù)路徑/ALU塊,既能用于數(shù)字?jǐn)?shù)據(jù)源集和匯集連接,也能用于高時(shí)鐘速率重復(fù)結(jié)構(gòu),如級(jí)聯(lián)積分器/梳狀濾波器 (CIC) 和噪聲成形數(shù)字轉(zhuǎn)換器。

在 PSoC3 和 PSoC5 系統(tǒng)中如何使用嵌入式數(shù)字濾波

數(shù)字濾波器塊可通過幾種方式使用。PSoC Creator 中集成的濾波器設(shè)計(jì)工具支持拖放工作方式,將數(shù)字濾波包括到信號(hào)流程中來。啟動(dòng)時(shí) PSoC Creator 配套提供了專用的 FIR 濾波器“組件”,在系統(tǒng)中可以像其他塊一樣使用。該組件能對(duì)信號(hào)應(yīng)用多種不同濾波器,既能單獨(dú)使用,也能組合使用。圖 1 顯示了該組件的屏幕截圖,從中我們看出它在 PSoC Creator 項(xiàng)目中的使用情況以及設(shè)置屬性的配置窗口。今后,更多濾波器拓?fù)浜突?dòng)濾波器設(shè)計(jì)向?qū)н€將添加到 PSoC Creator中。

 

 

圖 1:PSoC Creator 中的標(biāo)準(zhǔn) FIR 濾波器組件

與第一代 PSoC 產(chǎn)品一樣,我們的客戶和我們自己的系統(tǒng)工程師一直期待著全新 PSoC3和 PSoC5 應(yīng)用的到來。PSoC 的核心理念一直是推出靈活的產(chǎn)品,支持在產(chǎn)品設(shè)計(jì)時(shí)還暫未設(shè)想到的全新應(yīng)用。這種靈活性同樣適用于數(shù)字濾波器塊等功能塊。我們已經(jīng)用該塊開發(fā)了幾款定制應(yīng)用,并作為組件實(shí)施于 PSoC Creator 原理圖中。由于信號(hào)處理與主 CPU 相分離,我們能通過一系列 Creator 組件實(shí)現(xiàn) IP 的重復(fù)使用,而全部設(shè)計(jì)人員都能共享這些組件。

使用 PSoC3/5 的高性能嵌入式濾波示例

“時(shí)間校正”濾波器——多相內(nèi)插

如果用 PSoC3 來滿足近期電表讀取應(yīng)用的概念設(shè)計(jì)要求,我們需要補(bǔ)償單 Δ-Σ ADC 的通道間計(jì)時(shí)偏置,滿足多相電壓和電流多路復(fù)用的要求。如果不糾正上述時(shí)差的話,系統(tǒng)準(zhǔn)確性就會(huì)在加載低功耗因數(shù)期間快速下降,而且在線路頻率高諧波的功耗估算也會(huì)出問題。

數(shù)字濾波器塊非常適用于 FIR 濾波器,我們用它來創(chuàng)建多相內(nèi)插濾波器。在我們的原型設(shè)計(jì)*有四個(gè)通道,每個(gè)通道有 20 個(gè)抽頭 (tap)。該濾波器從單 ADC 獲得多路復(fù)用的數(shù)據(jù)流,將其“解包”為四個(gè)新的數(shù)據(jù)流,上述解包通道的信號(hào)延遲有差別,就好像信號(hào)同時(shí)被四個(gè)采樣 ADC 捕獲一樣,需要對(duì)采樣時(shí)間進(jìn)行校正。圖 2 顯示了四輸入多路復(fù)用轉(zhuǎn)換器順序采樣相同(帶限)信號(hào)所得的四個(gè)數(shù)據(jù)集。

 

 

圖 2:ADC 的四個(gè)順序多路復(fù)用輸入獲得相同的信號(hào)

圖 3 顯示了內(nèi)插濾波器系統(tǒng)的四個(gè)輸出,我們看到底層帶限波形在形狀和計(jì)時(shí)方面都已經(jīng)得到了準(zhǔn)確重構(gòu)。這種方法使單個(gè)高品質(zhì) ADC 能滿足極高的計(jì)量準(zhǔn)確性要求,支持各種相關(guān)功率因數(shù)和諧波頻率要求。這種方法對(duì)其他需要高效同時(shí)采樣的應(yīng)用而言同樣適用。

 

 

圖 3嵌入式多相內(nèi)插濾波器消除了偏差。

用于功率計(jì)的其他濾波器

數(shù)字濾波器塊在我們的計(jì)量設(shè)計(jì)中還提供了另外兩種有用的濾波器功能。首先,為了支持“經(jīng)典”基本無功功率的準(zhǔn)確計(jì)算,我們采用了計(jì)算機(jī)優(yōu)化的相移濾波器。大多數(shù)商業(yè)計(jì)量芯片都使用時(shí)間延遲或積分器來提供所需的 90 度相移。前一種方法的振幅特性曲線是平的,但在線路頻率值不準(zhǔn)確時(shí)會(huì)造成相移不準(zhǔn)。后一種方法會(huì)出現(xiàn)相反的問題,也就是說,相總是準(zhǔn)確的,但振幅則會(huì)根據(jù)頻率出現(xiàn)變化,這樣導(dǎo)致的結(jié)果是它只能滿足要求最不嚴(yán)格的計(jì)量應(yīng)用,但對(duì)其他應(yīng)用都不適用。上述兩種方法對(duì)我們來說都不適用。[!--empirenews.page--]

我們嵌入了在整個(gè)線路頻率范圍上都超出了最嚴(yán)格的無功功率準(zhǔn)確度要求的 6 極點(diǎn) IIR 濾波器(圖 4 和圖 5),從而避免使用會(huì)消耗整個(gè)系統(tǒng)處理功率的希爾伯特變換器方法。此外,我們的方法還具有低通特性,可大幅減弱電流波形中的諧波,使無功功率估算能獲得基本信息。

 

 

圖 4 和圖 5:頻率為 50Hz 的專用 n="6" 嵌入式 IIR 精確正交生成器。

現(xiàn)代電表應(yīng)用中還有一個(gè)重要的頻率響應(yīng)整形電路,即補(bǔ)償 di/dt 類型電流感應(yīng)器(如羅氏線圈或 Sentec Mobius)頻率響應(yīng)所需的積分器。這種電路的低頻響應(yīng)上升會(huì)加重前端本身的低頻模擬噪聲問題。這對(duì)標(biāo)準(zhǔn)的有源功率測(cè)量不構(gòu)成問題,但客戶對(duì)擴(kuò)大電流檢測(cè)動(dòng)態(tài)范圍的需求越來越高,以便確保電力基礎(chǔ)設(shè)施的視在功率和有效耗散得到準(zhǔn)確計(jì)算。在電流極低的情況下,積分器的噪聲組件會(huì)導(dǎo)致電流測(cè)量出現(xiàn)較高的誤差。

此外,由于增益不能無限上升,否則 DC 增益就會(huì)無限加大,因此積分器在傳統(tǒng)器件中會(huì)降低到較低的頻率,這就會(huì)產(chǎn)生對(duì)高精度應(yīng)用而言非常明顯的相誤差問題。為了支持 di/dt 感應(yīng)器的可選使用,我們?cè)O(shè)計(jì)了另一種 6 極點(diǎn) IIR濾波器,用來限制低頻響應(yīng)(根據(jù)前端設(shè)計(jì)的不同,集成噪聲性能提升了 9 ~ 15dB),同時(shí)還能在工作頻帶中提供理想積分器的振幅和相響應(yīng),實(shí)現(xiàn)比作為參照的“標(biāo)準(zhǔn)”計(jì)量芯片(圖 6 中的綠色跡線)更高的準(zhǔn)確性。

上述所有信號(hào)處理工作都由數(shù)字濾波器塊在高品質(zhì) Δ-Σ 調(diào)制器提供的相關(guān)多路復(fù)用信號(hào)上自動(dòng)實(shí)施,不需要處理器的干預(yù)。

 

 

圖 6:嵌入式 IIR 濾波的高準(zhǔn)確度低噪聲積分器(藍(lán)色跡線)

通信濾波器和檢測(cè)器

IEC 61334-5 SFSK 電力線通信標(biāo)準(zhǔn)在計(jì)量應(yīng)用中非常流行,它采用了 SFSK(Spread FSK)標(biāo)準(zhǔn)。該標(biāo)準(zhǔn)是從 FSK(頻率移動(dòng)鍵控)發(fā)展而來的,其中標(biāo)記頻率和空間頻率的距離比通常的數(shù)據(jù)速率要大得多。如果抵達(dá)信號(hào)被一對(duì)銳帶通濾波器拆分,只挑出標(biāo)記或空間頻率分量,則數(shù)據(jù)調(diào)制就能從兩個(gè)通道之一中獨(dú)立提取出來。由于在濾波器頻率響應(yīng)不重疊的情況下,單音調(diào)干擾源不能同時(shí)阻止兩個(gè)通道的解調(diào)制,因此這有助于提高抗干擾能力?;谙嚓P(guān)器的傳統(tǒng) FSK 解調(diào)器不能實(shí)現(xiàn)這么出色的抗干擾性。

圖 7 和圖 8 顯示了常見標(biāo)記/空間頻率對(duì)情況下,一對(duì)設(shè)計(jì)用于數(shù)字濾波器塊的濾波器頻率響應(yīng)。上述濾波器可方便地進(jìn)行重新配置,隨時(shí)滿足不同頻率和帶寬要求。在實(shí)際實(shí)施方案中,濾波器從主 ADC之一獲得輸入,而在此之前需要通過圍繞 PGA(可編程增益放大器)構(gòu)建 AGC 電路。

 

 

圖 7和圖 8:60/73kHz SFSK 的嵌入式分割濾波器;2x n="8" IIR,速度為 384ksps。

為了從濾波后的信號(hào)中提取數(shù)據(jù),要對(duì)每個(gè)信號(hào)的絕對(duì)值進(jìn)行校正(在數(shù)字濾波器塊中設(shè)置適當(dāng)控制寄存器位即可實(shí)現(xiàn))。

 

 

圖 9:極端過載條件下從兩個(gè)濾波器通道中檢測(cè)到的輸出

校正信號(hào)通過同樣運(yùn)行在數(shù)字濾波器塊上的低通濾波器,并同跟蹤信號(hào)電平的閾值進(jìn)行比較。在我們希望構(gòu)建的 PSoC5 實(shí)施方案中,每個(gè)通道的 SNR 由通用數(shù)字塊邏輯加以估算,數(shù)據(jù)傳遞給標(biāo)準(zhǔn)內(nèi)部UART,所有這些都無需 CPU 的一般干預(yù)。圖 9 顯示了交叉頻率為 66.5kHz 且存在 +30dB 干擾音時(shí),在最終輸出處對(duì)調(diào)制信號(hào)檢測(cè)到的響應(yīng)。兩個(gè)數(shù)據(jù)流均未受影響。

精確音頻均衡器(圖形均衡、段均衡和任意均衡)

PSoC3 和 PSoC5 數(shù)字濾波功能結(jié)合靈活的可編程通用數(shù)字塊,可為消費(fèi)音頻產(chǎn)品和配件設(shè)計(jì)提供可擴(kuò)展的靈活平臺(tái)。為了演示 PSoC3 的音頻濾波功能,我們?cè)O(shè)計(jì)了一款運(yùn)行在數(shù)字濾波器塊上的立體聲十頻段圖形均衡器,其濾波器系數(shù)由 CPU 通過遠(yuǎn)程應(yīng)用提供的目標(biāo)增益值即時(shí)計(jì)算得出。立體聲音頻編解碼器通過標(biāo)準(zhǔn)的I2S 接口連接到 PSoC3。該設(shè)計(jì)與通過單一本地晶體生成所有標(biāo)準(zhǔn)音頻主時(shí)鐘頻率的頻率合成系統(tǒng)共同實(shí)施在通用數(shù)字塊陣列上,其抖動(dòng)較低,能夠滿足優(yōu)質(zhì)音頻回放的要求。該合成系統(tǒng)可同步于一般數(shù)字接口格式的成幀模式。

 

 

圖 10和圖 11:PSoC3 中嵌入式濾波的觸摸控制頻率響應(yīng)

在 44.1kHz 采樣率下,十頻段立體聲均衡器使用數(shù)字濾波器塊大約一半的可用資源。系數(shù)計(jì)算例程可從本地控制(如 CapSense 按鈕和滑條)以及通過遠(yuǎn)程接口提供的控制協(xié)議動(dòng)態(tài)地獲得更新信息。圖 10 給出了演示應(yīng)用的屏幕截圖,該演示運(yùn)行在一款著名音樂播放器上,它嵌入了控制均衡器所設(shè)置的算法,可確保系統(tǒng)頻率響應(yīng)精確通過滑塊的“增益點(diǎn)”,并實(shí)時(shí)調(diào)節(jié)頻率響應(yīng)。出于比較目的,圖 11 顯示了原始的濾波器模擬。這種超級(jí)精確的頻率響應(yīng)控制簡(jiǎn)化了“復(fù)雜的”喇叭外殼聲學(xué)設(shè)計(jì),也有助于車內(nèi)駕駛員子系統(tǒng)和公共廣播應(yīng)用的設(shè)計(jì)工作。

在用戶偏好均衡完成之后,數(shù)字濾波器塊還能剩下足夠的資源來實(shí)施多頻段交叉濾波器組。輸出結(jié)果可通過多個(gè) I2S 接口提供給外部 DAC 或數(shù)字放大器。我們可以通過驅(qū)動(dòng)頻率響應(yīng)實(shí)現(xiàn)非常精微的控制,確保對(duì)接裝置、微型立體聲設(shè)備和平板電視等的小型多路聲學(xué)設(shè)計(jì)能獲得優(yōu)質(zhì)效果。通過管理用戶界面、通信和電源的同一設(shè)備,高通道數(shù)分布式音響加強(qiáng)和消息系統(tǒng)也能受益于這種簡(jiǎn)化的頻率響應(yīng)調(diào)節(jié)技術(shù)。

結(jié)論

本文僅簡(jiǎn)要介紹了嵌入式數(shù)字濾波技術(shù)。由于篇幅所限,我們沒有深入討論“立體聲增強(qiáng)”功能、數(shù)字麥克風(fēng)的抽選濾波器以及設(shè)計(jì)人員已經(jīng)開始在其中挖掘 PSoC3 和 PSoC5 強(qiáng)大信號(hào)處理功能的多種工業(yè)感應(yīng)器調(diào)節(jié)和醫(yī)療應(yīng)用領(lǐng)域。[!--empirenews.page--]

嵌入強(qiáng)大的數(shù)字濾波引擎是 PSoC 設(shè)計(jì)理念的全新元素,它與業(yè)界領(lǐng)先的信號(hào)路徑靈活性、ADC 性能以及 PSoC3 和 PSoC5 的可編程邏輯塊多功能性完美結(jié)合。嵌入式數(shù)字濾波配合全新 PSoC Creator 設(shè)計(jì)范例可實(shí)現(xiàn)多種應(yīng)用的轉(zhuǎn)型,并大幅降低系統(tǒng)成本,加快產(chǎn)品投放市場(chǎng)的速度。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

倫敦2024年8月29日 /美通社/ -- 英國(guó)汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動(dòng) BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對(duì)日本游戲市場(chǎng)的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)開幕式在貴陽(yáng)舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國(guó)國(guó)際大數(shù)據(jù)產(chǎn)業(yè)博覽會(huì)上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語(yǔ)權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對(duì)環(huán)境變化,經(jīng)營(yíng)業(yè)績(jī)穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤(rùn)率延續(xù)升勢(shì) 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長(zhǎng) 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競(jìng)爭(zhēng)力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競(jìng)爭(zhēng)優(yōu)勢(shì)...

關(guān)鍵字: 通信 BSP 電信運(yùn)營(yíng)商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺(tái)與中國(guó)電影電視技術(shù)學(xué)會(huì)聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會(huì)上宣布正式成立。 活動(dòng)現(xiàn)場(chǎng) NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長(zhǎng)三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會(huì)上,軟通動(dòng)力信息技術(shù)(集團(tuán))股份有限公司(以下簡(jiǎn)稱"軟通動(dòng)力")與長(zhǎng)三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉