linux內(nèi)核工作隊列講解和源碼詳細(xì)注釋
1. 前言
工作隊列(workqueue)的Linux內(nèi)核中的定義的用來處理不是很緊急事件的回調(diào)方式處理方法。
以下代碼的linux內(nèi)核版本為2.6.19.2, 源代碼文件主要為kernel/workqueue.c.
2. 數(shù)據(jù)結(jié)構(gòu)
/* include/linux/workqueue.h */ // 工作節(jié)點結(jié)構(gòu)struct work_struct { // 等待時間unsigned long pending;// 鏈表節(jié)點struct list_head entry;// workqueue回調(diào)函數(shù)void (*func)(void *);// 回調(diào)函數(shù)func的數(shù)據(jù)void *data;// 指向CPU相關(guān)數(shù)據(jù), 一般指向struct cpu_workqueue_struct結(jié)構(gòu)void *wq_data;// 定時器struct timer_list timer;};
struct execute_work { struct work_struct work;};
/* kernel/workqueue.c */ /* * The per-CPU workqueue (if single thread, we always use the first * possible cpu)。
* * The sequence counters are for flush_scheduled_work()。 It wants to wait * until all currently-scheduled works are completed, but it doesn't * want to be livelocked by new, incoming ones. So it waits until * remove_sequence is >= the insert_sequence which pertained when * flush_scheduled_work() was called. */ // 這個結(jié)構(gòu)是針對每個CPU的struct cpu_workqueue_struct { // 結(jié)構(gòu)鎖spinlock_t lock;// 下一個要執(zhí)行的節(jié)點序號long remove_sequence; /* Least-recently added (next to run) */ // 下一個要插入節(jié)點的序號long insert_sequence; /* Next to add */ // 工作機(jī)構(gòu)鏈表節(jié)點struct list_head worklist;// 要進(jìn)行處理的等待隊列wait_queue_head_t more_work;// 處理完的等待隊列wait_queue_head_t work_done;// 工作隊列節(jié)點struct workqueue_struct *wq;// 進(jìn)程指針struct task_struct *thread;int run_depth; /* Detect run_workqueue() recursion depth */ } ____cacheline_aligned;/* * The externally visible workqueue abstraction is an array of * per-CPU workqueues:*/ // 工作隊列結(jié)構(gòu)struct workqueue_struct { struct cpu_workqueue_struct *cpu_wq;const char *name;struct list_head list; /* Empty if single thread */ };
kernel/workqueue.c中定義了一個工作隊列鏈表, 所有工作隊列可以掛接到這個鏈表中:static LIST_HEAD(workqueues);
3. 一些宏定義
/* include/linux/workqueue.h */ // 初始化工作隊列#define __WORK_INITIALIZER(n, f, d) { // 初始化list。entry = { &(n)。entry, &(n)。entry },// 回調(diào)函數(shù)。func = (f),// 回調(diào)函數(shù)參數(shù)。data = (d),// 初始化定時器。timer = TIMER_INITIALIZER(NULL, 0, 0),}
// 聲明工作隊列并初始化#define DECLARE_WORK(n, f, d)
struct work_struct n = __WORK_INITIALIZER(n, f, d)
/* * initialize a work-struct's func and data pointers:*/ // 重新定義工作結(jié)構(gòu)參數(shù)#define PREPARE_WORK(_work, _func, _data)
do {(_work)->func = _func;(_work)->data = _data;} while (0)
/* * initialize all of a work-struct:*/ // 初始化工作結(jié)構(gòu), 和__WORK_INITIALIZER功能相同,不過__WORK_INITIALIZER用在// 參數(shù)初始化定義, 而該宏用在程序之中對工作結(jié)構(gòu)賦值#define INIT_WORK(_work, _func, _data)
do { INIT_LIST_HEAD(&(_work)->entry);(_work)->pending = 0;PREPARE_WORK((_work), (_func), (_data));init_timer(&(_work)->timer);} while (0)
4. 操作函數(shù)
4.1 創(chuàng)建工作隊列
一般的創(chuàng)建函數(shù)是create_workqueue, 但這其實只是一個宏:/* include/linux/workqueue.h */ #define create_workqueue(name) __create_workqueue((name), 0)
在workqueue的初始化函數(shù)中, 定義了一個針對內(nèi)核中所有線程可用的事件工作隊列, 其他內(nèi)核線程建立的事件工作結(jié)構(gòu)就都掛接到該隊列:void init_workqueues(void)
{……
keventd_wq = create_workqueue("events");……
}
核心創(chuàng)建函數(shù)是__create_workqueue:
struct workqueue_struct *__create_workqueue(const char *name,int singlethread)
{ int cpu, destroy = 0;struct workqueue_struct *wq;struct task_struct *p;// 分配工作隊列結(jié)構(gòu)空間wq = kzalloc(sizeof(*wq), GFP_KERNEL);if (!wq)
return NULL;// 為每個CPU分配單獨的工作隊列空間wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);if (!wq->cpu_wq) { kfree(wq);return NULL;} wq->name = name;mutex_lock(&workqueue_mutex);if (singlethread) { // 使用create_workqueue宏時該參數(shù)始終為0 // 如果是單一線程模式, 在單線程中調(diào)用各個工作隊列// 建立一個的工作隊列內(nèi)核線程INIT_LIST_HEAD(&wq->list);// 建立工作隊列的線程p = create_workqueue_thread(wq, singlethread_cpu);if (!p)
destroy = 1;else // 喚醒該線程wake_up_process(p);} else { // 鏈表模式, 將工作隊列添加到工作隊列鏈表list_add(&wq->list, &workqueues);// 為每個CPU建立一個工作隊列線程for_each_online_cpu(cpu) { p = create_workqueue_thread(wq, cpu);if (p) { // 綁定CPU kthread_bind(p, cpu);// 喚醒線程wake_up_process(p);} else destroy = 1;} mutex_unlock(&workqueue_mutex);/* * Was there any error during startup? If yes then clean up:*/ if (destroy) { // 建立線程失敗, 釋放工作隊列destroy_workqueue(wq);wq = NULL;} return wq;} EXPORT_SYMBOL_GPL(__create_workqueue);
// 創(chuàng)建工作隊列線程static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,int cpu)
{ // 每個CPU的工作隊列struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);struct task_struct *p;spin_lock_init(&cwq->lock);// 初始化cwq->wq = wq;cwq->thread = NULL;cwq->insert_sequence = 0;cwq->remove_sequence = 0;INIT_LIST_HEAD(&cwq->worklist);// 初始化等待隊列more_work, 該隊列處理要執(zhí)行的工作結(jié)構(gòu)init_waitqueue_head(&cwq->more_work);// 初始化等待隊列work_done, 該隊列處理執(zhí)行完的工作結(jié)構(gòu)init_waitqueue_head(&cwq->work_done);// 建立內(nèi)核線程work_thread if (is_single_threaded(wq))[!--empirenews.page--]
p = kthread_create(worker_thread, cwq, "%s", wq->name);else p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);if (IS_ERR(p))
return NULL;// 保存線程指針cwq->thread = p;return p;} static int worker_thread(void *__cwq)
{ struct cpu_workqueue_struct *cwq = __cwq;// 聲明一個等待隊列DECLARE_WAITQUEUE(wait, current);// 信號struct k_sigaction sa;sigset_t blocked;current->flags |= PF_NOFREEZE;// 降低進(jìn)程優(yōu)先級, 工作進(jìn)程不是個很緊急的進(jìn)程,不和其他進(jìn)程搶占CPU,通常在系統(tǒng)空閑時運行set_user_nice(current, -5);/* Block and flush all signals */ // 阻塞所有信號sigfillset(&blocked);sigprocmask(SIG_BLOCK, &blocked, NULL);flush_signals(current);/* * We inherited MPOL_INTERLEAVE from the booting kernel. * Set MPOL_DEFAULT to insure node local allocations. */ numa_default_policy();/* SIG_IGN makes children autoreap: see do_notify_parent()。 */ // 信號處理都是忽略sa.sa.sa_handler = SIG_IGN;sa.sa.sa_flags = 0;siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);// 進(jìn)程可中斷set_current_state(TASK_INTERRUPTIBLE);// 進(jìn)入循環(huán), 沒明確停止該進(jìn)程就一直運行while (!kthread_should_stop()) { // 設(shè)置more_work等待隊列, 當(dāng)有新work結(jié)構(gòu)鏈入隊列中時會激發(fā)此等待隊列add_wait_queue(&cwq->more_work, &wait);if (list_empty(&cwq->worklist))
// 工作隊列為空, 睡眠schedule();else // 進(jìn)行運行狀態(tài)__set_current_state(TASK_RUNNING);// 刪除等待隊列remove_wait_queue(&cwq->more_work, &wait);// 按鏈表遍歷執(zhí)行工作任務(wù)if (!list_empty(&cwq->worklist))
run_workqueue(cwq);// 執(zhí)行完工作, 設(shè)置進(jìn)程是可中斷的, 重新循環(huán)等待工作set_current_state(TASK_INTERRUPTIBLE);} __set_current_state(TASK_RUNNING);return 0;}
// 運行工作結(jié)構(gòu)static void run_workqueue(struct cpu_workqueue_struct *cwq)
{ unsigned long flags;/* * Keep taking off work from the queue until * done. */ // 加鎖spin_lock_irqsave(&cwq->lock, flags);// 統(tǒng)計已經(jīng)遞歸調(diào)用了多少次了cwq->run_depth++;if (cwq->run_depth > 3) { // 遞歸調(diào)用此時太多/* morton gets to eat his hat */ printk("%s: recursion depth exceeded: %dn",__FUNCTION__, cwq->run_depth);dump_stack();} // 遍歷工作鏈表while (!list_empty(&cwq->worklist)) { // 獲取的是next節(jié)點的struct work_struct *work = list_entry(cwq->worklist.next,struct work_struct, entry);void (*f) (void *) = work->func;void *data = work->data;// 刪除節(jié)點, 同時節(jié)點中的list參數(shù)清空list_del_init(cwq->worklist.next);// 解鎖// 現(xiàn)在在執(zhí)行以下代碼時可以中斷,run_workqueue本身可能會重新被調(diào)用, 所以要判斷遞歸深度spin_unlock_irqrestore(&cwq->lock, flags);BUG_ON(work->wq_data != cwq);// 工作結(jié)構(gòu)已經(jīng)不在鏈表中clear_bit(0, &work->pending);// 執(zhí)行工作函數(shù)f(data);// 重新加鎖spin_lock_irqsave(&cwq->lock, flags);// 執(zhí)行完的工作序列號遞增cwq->remove_sequence++;// 喚醒工作完成等待隊列, 供釋放工作隊列wake_up(&cwq->work_done);} // 減少遞歸深度cwq->run_depth——;// 解鎖spin_unlock_irqrestore(&cwq->lock, flags);}
4.2 釋放工作隊列
/** * destroy_workqueue - safely terminate a workqueue * @wq: target workqueue * * Safely destroy a workqueue. All work currently pending will be done first. */ void destroy_workqueue(struct workqueue_struct *wq)
{ int cpu;// 清除當(dāng)前工作隊列中的所有工作flush_workqueue(wq);/* We don't need the distraction of CPUs appearing and vanishing. */ mutex_lock(&workqueue_mutex);// 結(jié)束該工作隊列的線程if (is_single_threaded(wq))
cleanup_workqueue_thread(wq, singlethread_cpu);else { for_each_online_cpu(cpu)
cleanup_workqueue_thread(wq, cpu);list_del(&wq->list);} mutex_unlock(&workqueue_mutex);// 釋放工作隊列中對應(yīng)每個CPU的工作隊列數(shù)據(jù)free_percpu(wq->cpu_wq);kfree(wq);} EXPORT_SYMBOL_GPL(destroy_workqueue);
/** * flush_workqueue - ensure that any scheduled work has run to completion. * @wq: workqueue to flush * * Forces execution of the workqueue and blocks until its completion. * This is typically used in driver shutdown handlers. * * This function will sample each workqueue's current insert_sequence number and * will sleep until the head sequence is greater than or equal to that. This * means that we sleep until all works which were queued on entry have been * handled, but we are not livelocked by new incoming ones. * * This function used to run the workqueues itself. Now we just wait for the * helper threads to do it. */ void fastcall flush_workqueue(struct workqueue_struct *wq)
{ // 該進(jìn)程可以睡眠might_sleep();// 清空每個CPU上的工作隊列if (is_single_threaded(wq)) { /* Always use first cpu's area. */ flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));} else { int cpu;mutex_lock(&workqueue_mutex);for_each_online_cpu(cpu)
flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));mutex_unlock(&workqueue_mutex);} EXPORT_SYMBOL_GPL(flush_workqueue);[!--empirenews.page--]
flush_workqueue的核心處理函數(shù)為flush_cpu_workqueue:static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
{ if (cwq->thread == current) { // 如果是工作隊列進(jìn)程正在被調(diào)度/* * Probably keventd trying to flush its own queue. So simply run * it by hand rather than deadlocking. */ // 執(zhí)行完該工作隊列run_workqueue(cwq);} else { // 定義等待DEFINE_WAIT(wait);long sequence_needed;// 加鎖spin_lock_irq(&cwq->lock);// 最新工作結(jié)構(gòu)序號sequence_needed = cwq->insert_sequence;// 該條件是判斷隊列中是否還有沒有執(zhí)行的工作結(jié)構(gòu)while (sequence_needed - cwq->remove_sequence > 0) { // 有為執(zhí)行的工作結(jié)構(gòu)// 通過work_done等待隊列等待prepare_to_wait(&cwq->work_done, &wait,TASK_UNINTERRUPTIBLE);// 解鎖spin_unlock_irq(&cwq->lock);// 睡眠, 由wake_up(&cwq->work_done)來喚醒schedule();// 重新加鎖spin_lock_irq(&cwq->lock);} // 等待清除finish_wait(&cwq->work_done, &wait);spin_unlock_irq(&cwq->lock);}
4.3 調(diào)度工作
在大多數(shù)情況下, 并不需要自己建立工作隊列,而是只定義工作, 將工作結(jié)構(gòu)掛接到內(nèi)核預(yù)定義的事件工作隊列中調(diào)度, 在kernel/workqueue.c中定義了一個靜態(tài)全局量的工作隊列keventd_wq:static struct workqueue_struct *keventd_wq;
4.3.1 立即調(diào)度// 在其他函數(shù)中使用以下函數(shù)來調(diào)度工作結(jié)構(gòu), 是把工作結(jié)構(gòu)掛接到工作隊列中進(jìn)行調(diào)度/** * schedule_work - put work task in global workqueue * @work: job to be done * * This puts a job in the kernel-global workqueue. */ // 調(diào)度工作結(jié)構(gòu), 將工作結(jié)構(gòu)添加到事件工作隊列keventd_wq int fastcall schedule_work(struct work_struct *work)
{ return queue_work(keventd_wq, work);} EXPORT_SYMBOL(schedule_work);
/** * queue_work - queue work on a workqueue * @wq: workqueue to use * @work: work to queue * * Returns 0 if @work was already on a queue, non-zero otherwise. * * We queue the work to the CPU it was submitted, but there is no * guarantee that it will be processed by that CPU. */ int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
{ int ret = 0, cpu = get_cpu();if (!test_and_set_bit(0, &work->pending)) { // 工作結(jié)構(gòu)還沒在隊列, 設(shè)置pending標(biāo)志表示把工作結(jié)構(gòu)掛接到隊列中if (unlikely(is_single_threaded(wq)))
cpu = singlethread_cpu;BUG_ON(!list_empty(&work->entry));// 進(jìn)行具體的排隊__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);ret = 1;} put_cpu();return ret;} EXPORT_SYMBOL_GPL(queue_work);/* Preempt must be disabled. */ // 不能被搶占static void __queue_work(struct cpu_workqueue_struct *cwq,struct work_struct *work)
{ unsigned long flags;// 加鎖spin_lock_irqsave(&cwq->lock, flags);// 指向CPU工作隊列work->wq_data = cwq;// 掛接到工作鏈表list_add_tail(&work->entry, &cwq->worklist);// 遞增插入的序列號cwq->insert_sequence++;// 喚醒等待隊列準(zhǔn)備處理工作結(jié)構(gòu)wake_up(&cwq->more_work);spin_unlock_irqrestore(&cwq->lock, flags);}
4.3.2 延遲調(diào)度
4.3.2.1 schedule_delayed_work /** * schedule_delayed_work - put work task in global workqueue after delay * @work: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue. */ // 延遲調(diào)度工作, 延遲一定時間后再將工作結(jié)構(gòu)掛接到工作隊列int fastcall schedule_delayed_work(struct work_struct *work, unsigned long delay)
{ return queue_delayed_work(keventd_wq, work, delay);} EXPORT_SYMBOL(schedule_delayed_work);
/** * queue_delayed_work - queue work on a workqueue after delay * @wq: workqueue to use * @work: work to queue * @delay: number of jiffies to wait before queueing * * Returns 0 if @work was already on a queue, non-zero otherwise. */ int fastcall queue_delayed_work(struct workqueue_struct *wq,struct work_struct *work, unsigned long delay)
{ int ret = 0;// 定時器, 此時的定時器應(yīng)該是不起效的, 延遲將通過該定時器來實現(xiàn)struct timer_list *timer = &work->timer;if (!test_and_set_bit(0, &work->pending)) { // 工作結(jié)構(gòu)還沒在隊列, 設(shè)置pending標(biāo)志表示把工作結(jié)構(gòu)掛接到隊列中// 如果現(xiàn)在定時器已經(jīng)起效, 出錯BUG_ON(timer_pending(timer));// 工作結(jié)構(gòu)已經(jīng)掛接到鏈表, 出錯BUG_ON(!list_empty(&work->entry));/* This stores wq for the moment, for the timer_fn */ // 保存工作隊列的指針work->wq_data = wq;// 定時器初始化timer->expires = jiffies + delay;timer->data = (unsigned long)work;// 定時函數(shù)timer->function = delayed_work_timer_fn;// 定時器生效, 定時到期后再添加到工作隊列add_timer(timer);ret = 1;} return ret;} EXPORT_SYMBOL_GPL(queue_delayed_work);
// 定時中斷函數(shù)static void delayed_work_timer_fn(unsigned long __data)
{ struct work_struct *work = (struct work_struct *)__data;struct workqueue_struct *wq = work->wq_data;// 獲取CPU int cpu = smp_processor_id();if (unlikely(is_single_threaded(wq)))
cpu = singlethread_cpu;// 將工作結(jié)構(gòu)添加到工作隊列,注意這是在時間中斷調(diào)用__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);}[!--empirenews.page--]
4.3.2.2 schedule_delayed_work_on
指定CPU的延遲調(diào)度工作結(jié)構(gòu), 和schedule_delayed_work相比增加了一個CPU參數(shù), 其他都相同/** * schedule_delayed_work_on - queue work in global workqueue on CPU after delay * @cpu: cpu to use * @work: job to be done * @delay: number of jiffies to wait * * After waiting for a given time this puts a job in the kernel-global * workqueue on the specified CPU. */ int schedule_delayed_work_on(int cpu,struct work_struct *work, unsigned long delay)
{ return queue_delayed_work_on(cpu, keventd_wq, work, delay);}
/** * queue_delayed_work_on - queue work on specific CPU after delay * @cpu: CPU number to execute work on * @wq: workqueue to use * @work: work to queue * @delay: number of jiffies to wait before queueing * * Returns 0 if @work was already on a queue, non-zero otherwise. */ int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,struct work_struct *work, unsigned long delay)
{ int ret = 0;struct timer_list *timer = &work->timer;if (!test_and_set_bit(0, &work->pending)) { BUG_ON(timer_pending(timer));BUG_ON(!list_empty(&work->entry));/* This stores wq for the moment, for the timer_fn */ work->wq_data = wq;timer->expires = jiffies + delay;timer->data = (unsigned long)work;timer->function = delayed_work_timer_fn;add_timer_on(timer, cpu);ret = 1;} return ret;} EXPORT_SYMBOL_GPL(queue_delayed_work_on);
5. 結(jié)論
工作隊列和定時器函數(shù)處理有點類似, 都是執(zhí)行一定的回調(diào)函數(shù), 但和定時器處理函數(shù)不同的是定時器回調(diào)函數(shù)只執(zhí)行一次, 而且執(zhí)行定時器回調(diào)函數(shù)的時候是在時鐘中斷中, 限制比較多, 因此回調(diào)程序不能太復(fù)雜; 而工作隊列是通過內(nèi)核線程實現(xiàn), 一直有效, 可重復(fù)執(zhí)行, 由于執(zhí)行時降低了線程的優(yōu)先級, 執(zhí)行時可能休眠, 因此工作隊列處理的應(yīng)該是那些不是很緊急的任務(wù), 如垃圾回收處理等, 通常在系統(tǒng)空閑時執(zhí)行,在xfrm庫中就廣泛使用了workqueue,使用時,只需要定義work結(jié)構(gòu),然后調(diào)用schedule_(delayed_)work即可。