在繪制原理圖時,人們對系統(tǒng)接地回路(或 )符號總是有些想當然。 符號遍及原理圖的各個角落,而且原理圖假定不同的 在印刷電路板 (PCB) 上都將處在相同的電勢下。事實上,經(jīng)過 GND 阻抗的電流會在 PCB 上的 GND 連接之間創(chuàng)建電壓差。單端 dc 電路對這些 GND 壓差尤其敏感,因為預(yù)期的單端電路可轉(zhuǎn)變?yōu)椋瑢?dǎo)致輸出誤差。
我們以以下所示標準非反相放大器電路為例加以說明。在輸入電源 VIN 和輸入電阻器 RI的 GND 電勢相等時,適用于我們熟悉的電路增益 1+RF/RI。因此,100mV 輸入信號乘以 10V/V 增益,就等于 1V 的輸出。
在下圖所示電路中,輸入電源 GND 與 RI GND 連接之間已插入一個電壓源 VGND2。結(jié)果 = 修改的傳輸函數(shù) + VGND2 電壓 × - RF/RI 反相電路增益。10mV 的 GND 電勢差可將所需 1V 輸出降低 90mV,降至 0.91V。與所需的 1V 輸出相比,這相當于 9% 的相對誤差。
在以下所示電路中,當輸出電壓參考第三個 GND 電勢 VGND3 時,傳輸函數(shù)會進一步受到影響。VGND3 電壓將直接從前一個輸出傳輸函數(shù)中減去。所以與所需的 1V 輸出相比,20mV VGND3 電壓可將輸出電壓降至 890mV,相當于 11% 的誤差。
使用適當?shù)?PCB 布局技術(shù)使電路輸入電源、輸入電阻器以及輸出電壓的 GND 處于相同的電勢下,這樣可減少以上兩個實例中出現(xiàn)的問題。最佳解決方案是使用常見的“星形”GND 方法使重要的 GND 連接在物理上相互靠近。這將降低在 GND 連接之間產(chǎn)生的 PCB 阻抗,進而可減少它們之間的任何電壓電勢差異。在以下所示示例電路原理圖與布局中,輸入電源、輸出電壓與輸入電阻器的 GND 連接都在 PCB 的頂層挨著。這可防止單端電路變成!
總之,下次有任何 dc 電路性能問題時,請檢查所有重要 GND 連接的電壓電勢是否都相等。