當(dāng)前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀] 近年來隨著介觀物理和納米電子學(xué)對散粒噪聲研究的不斷深入,人們發(fā)現(xiàn)散粒噪聲可以很好的表征納米器件內(nèi)部電子傳輸特性。由于宏觀電子元器件中也會有介觀或者納米尺度的結(jié)構(gòu),例如缺陷、小孔隙和晶粒等,因而也會

    近年來隨著介觀物理和納米電子學(xué)對散粒噪聲研究的不斷深入,人們發(fā)現(xiàn)散粒噪聲可以很好的表征納米器件內(nèi)部電子傳輸特性。由于宏觀電子元器件中也會有介觀或者納米尺度的結(jié)構(gòu),例如缺陷、小孔隙和晶粒等,因而也會產(chǎn)生散粒噪聲,并且可能攜帶內(nèi)部結(jié)構(gòu)的信息。這使人們對宏觀電子元器件中散粒噪聲研究產(chǎn)生了極大的興趣。另一方面,隨著器件尺寸的不斷縮小,MOSFET器件中散粒噪聲成分也越來越顯著,已經(jīng)嚴(yán)重影響器件以及電路的噪聲水平,人們必須要了解電子元器件中散粒噪聲的產(chǎn)生機(jī)理和特性,以便更好的抑制器件的散粒噪聲,實(shí)現(xiàn)器件和電路的低噪聲化。
    對于短溝道MOSFET器件,在室溫條件下,散粒噪聲被其他類型的噪聲所淹沒,一般在實(shí)驗(yàn)中很難觀察到它的存在。目前國內(nèi)外對于散粒噪聲測試技術(shù)的研究取得了快速的進(jìn)展,但是普遍存在干擾噪聲大、測試儀器價(jià)格昂貴等問題,難以實(shí)現(xiàn)普及應(yīng)用。文中所介紹的測試系統(tǒng)是在屏蔽環(huán)境下將被測器件置于低溫裝置內(nèi),抑制了外界電磁波和熱噪聲的干擾;同時(shí)使用低噪聲前置放大器使散粒噪聲充分放大,并顯著降低系統(tǒng)背景噪聲;通過提取噪聲頻譜高頻段平均值,去除了低頻1/f噪聲的影響,使測試結(jié)果更加的準(zhǔn)確。使用本系統(tǒng)測試短溝道MOSFET器件散粒噪聲,得到了很好的測試結(jié)果。文中的工作為散粒噪聲測試提供了一種方法,對短溝道MOSFET散粒噪聲測試結(jié)果進(jìn)行了討論。


1 測試原理
    對于短溝道MOSFET中散粒噪聲的測試,主要影響因素包括:外界電磁干擾、低頻1/f噪聲、熱噪聲以及測試系統(tǒng)背景噪聲等。散粒噪聲屬于微弱信號,在實(shí)際測試中外界電磁干擾對測試結(jié)果影響顯著,將整個(gè)實(shí)驗(yàn)裝置放置于電磁屏蔽環(huán)境下進(jìn)行測試,這樣就有效地抑制了外界電磁干擾。散粒噪聲和熱噪聲均屬于白噪聲,在室溫下由于熱噪聲的影響,一般很難測量到散粒噪聲的存在,因此需要最大限度降低熱噪聲的影響。在測試中將待測器件置于液氮環(huán)境中,在此溫度下器件熱噪聲相對于散粒噪聲可以忽略。對于器件散粒噪聲的測試,必須通過充分放大才能被數(shù)據(jù)采集卡所采集,所以要、求放大器要有足夠的增益,同時(shí)要求不能引入太大的系統(tǒng)噪聲,否則系統(tǒng)噪聲會淹沒所測器件的散粒噪聲,因此采用低噪聲高增益的前置放大器。對于短溝道MOSFET,其低頻1/f噪聲非常顯著,它對散粒噪聲的影響很大,由于1/f只是在低頻部分明顯,在高頻部分很小,因而可以通過提取噪聲高頻部分的平均值來降低1/f噪聲對測試的影響,使測試結(jié)果更加的準(zhǔn)確。據(jù)此,設(shè)計(jì)了一種低溫散粒噪聲測試系統(tǒng)。


2 測試系統(tǒng)設(shè)計(jì)及測試方案
2.1 測試系統(tǒng)設(shè)計(jì)
    測試系統(tǒng),如圖1所示,主要由偏置電路、低噪聲前置放大器、數(shù)據(jù)采集和噪聲分析系統(tǒng)組成。將所有測試設(shè)備放置于雙層金屬網(wǎng)組成的屏蔽室內(nèi),可以有效的抑制外界電磁噪聲的干擾;測試系統(tǒng)低溫裝置是一個(gè)裝有液氮的杜瓦瓶,它可以提供77 K的測試溫度,這樣就有效的降低了熱噪聲的影響。Vcc1和Vcc2為電壓可調(diào)的低噪聲鎳氫直流電池組,分別為器件提供柵源電壓和漏源偏壓,電池組不能用直流電源代替,因?yàn)橹绷麟娫吹脑肼暠容^大。

[!--empirenews.page--]

    變阻器R1和R2均屬于低噪聲線繞電位器,最大阻值均為10 kΩ,分別用于柵源電壓和漏源的調(diào)節(jié)。同時(shí)為了測試更加準(zhǔn)確,變阻器R1和R2也一并置于液氮裝置內(nèi),以降低其自身熱噪聲的影響。前置放大器采用美國EG&G普林斯頓應(yīng)用研究公司制造的PARC113型低噪聲前置放大器,放大增益范圍為20~80 dB,測試帶寬為1~300 kHz,其背景噪聲很低,滿足實(shí)驗(yàn)的測試要求。
    數(shù)據(jù)采集和噪聲分析軟件為“XD3020電子元器件噪聲-可靠性分析系統(tǒng)”軟件,它包含5大功能:噪聲頻譜分析、器件可靠性篩選、噪聲分析診斷、時(shí)頻域子波分析、時(shí)域分析。對于散粒噪聲分析,主要用到噪聲頻譜分析模塊。
    通過具體測試對系統(tǒng)進(jìn)行了驗(yàn)證。設(shè)置柵源電壓為0.1 V,漏源電壓為0.36 V,為了降低低頻1/f噪聲的干擾,提取電流噪聲功率譜299~300 kHz高頻段的平均值。如圖2所示,從圖中可以看出高頻段是白噪聲。在室溫下,被測器件噪聲幅值為1.2×10-15V2/Hz左右;而77 K時(shí),在相同偏置條件下測試了樣品的噪聲,電流噪聲幅值為1.5×10-16V2/Hz左右,對比室溫和77 K時(shí)樣品噪聲,可以看出噪聲幅值降了一個(gè)數(shù)量級,通過計(jì)算可知熱噪聲被減少大約90%,可見77 K時(shí)熱噪聲被明顯抑制。同時(shí)測量了低溫下系統(tǒng)的背景噪聲,它的噪聲幅值為4×10-17V2/Hz左右,而低溫下樣品的噪聲幅值為1.5×1O-16V2/Hz,因此低溫下系統(tǒng)背景噪聲相對較小,可以忽略。本測試系統(tǒng)能滿足低溫下散粒噪聲測試的要求。

2.2 測試方案
    實(shí)驗(yàn)樣品選用0.18μm工藝nMOSFET器件,溝道寬長比為20μm/0.6μm,柵氧化層厚度為20 nm,閾值電壓為0.7 V。分別測試器件在亞閾區(qū)、線性區(qū)和飽和區(qū)的源漏電流散粒噪聲功率譜。具體步驟為,設(shè)置Vgs=0.1 V,使器件處在亞閾值區(qū),Ids在0.055~1 mA變化,測試器件在不同溝道電流下的電流噪聲功率譜值;再設(shè)置Vgs=1.2 V,使器件工作在反型區(qū),測試Ids在0.055~1.5 mA變化時(shí)線性區(qū)和飽和區(qū)的電流噪聲功率譜值。在功率譜提取時(shí),取270~300 kHz頻率段電流噪聲功率譜的平均值,這樣既可以去除低頻1/f噪聲對測試結(jié)果的影響,也可以通過平均值算法使分析的測試數(shù)據(jù)更加準(zhǔn)確。

[!--empirenews.page--]
3 測試結(jié)果及討論
    圖3和圖4分別為器件工作在亞閾區(qū)和反型區(qū)條件下,電流噪聲功率譜隨漏源電流的變化情況。

    由圖中可以看出,在亞閾區(qū),小漏源電流的條件下,溝道電流和電流噪聲功率譜呈現(xiàn)線性關(guān)系,證明器件在此工作條件下存在散粒噪聲。相比于長溝道MOSFET器件,短溝道器件溝道源區(qū)附件明顯存在一個(gè)勢壘,勢壘高度隨柵源電壓的增大而增大,隨漏源電壓的增大而減小。在此偏置條件下,溝道內(nèi)電場強(qiáng)度很小,擴(kuò)散電流成分顯著,擴(kuò)散電流隨機(jī)通過源極附近勢壘,引起散粒噪聲。隨著漏源電壓的增大,溝道內(nèi)電場增強(qiáng),勢壘減小,漂移電流成為主要成分,散粒噪聲隨之被抑制。
    在反型區(qū),小的漏源電流條件下,器件工作在線性區(qū)。如圖4所示,與亞閾區(qū)類似,可以看到明顯的散粒噪聲成分。但是隨著漏源電流的增大,在漏源電流大約為0.5μA時(shí),器件進(jìn)入飽和區(qū)。此時(shí)源區(qū)勢壘和溝道內(nèi)擴(kuò)散電流成分顯著減小,因此導(dǎo)致由擴(kuò)散電流引起的散粒噪聲減小。但此時(shí)漏端溝道正好處在夾斷點(diǎn)位置,載流子通過夾斷點(diǎn)耗盡區(qū)是彈道傳輸模式,引起了散粒噪聲的產(chǎn)生,導(dǎo)致散粒噪聲再次隨漏源電流的增大而增大。但隨著漏源電流的繼續(xù)增大,夾斷區(qū)長度不斷增加,載流子在夾斷區(qū)散射增強(qiáng),散粒噪聲再次被抑制。


4 結(jié)束語
    針對MOSFET散粒噪聲難以測量的特點(diǎn),文中提出了一種低溫散粒噪聲測試方法。在屏蔽環(huán)境下,將被測器件置于低溫裝置內(nèi),有效抑制了外界電磁波和熱噪聲的干擾。采用背景噪聲充分低的放大器以及偏置器、適配器等,建立低溫散粒噪聲測試系統(tǒng)。應(yīng)用本系統(tǒng)對短溝道MOSFET器件進(jìn)行噪聲測試,分析該器件散粒噪聲的特性。文中的工作為器件散粒噪聲測試提供了一種方法,對短溝道MOSFET散粒噪聲特性進(jìn)行了分析。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時(shí)1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時(shí)企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險(xiǎn),如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報(bào)道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實(shí)提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅(jiān)持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉