當(dāng)前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀]本文對微浪涌電壓的發(fā)生機(jī)理及其對電機(jī)的影響作了分析,介紹了抑制微浪涌電壓的技術(shù),以及最近出現(xiàn)的衰減微浪涌電壓的產(chǎn)品和采用細(xì)線徑傳輸為特征的微浪涌抑制組件的工作原理等。

 0 引言

  隨著世界性的環(huán)境保護(hù)意識的提高和節(jié)能要求的迅速發(fā)展,特別是在工業(yè)用電機(jī)控制中,以電力半導(dǎo)體組件組裝的變頻器正成為應(yīng)用的主流。

  但當(dāng)變頻器和電機(jī)之間的接線距離很長時,電機(jī)接線端因變頻器的高速開關(guān)過程引起的微浪涌電壓,給電機(jī)的絕緣帶來影響,造成電機(jī)損傷。這里把浪涌稱為微浪涌是為了區(qū)別于雷電等突發(fā)的強(qiáng)大浪涌,微浪涌從示波器上看是密集的、連續(xù)存在的、很窄的尖峰電壓。

  本文對微浪涌電壓的發(fā)生機(jī)理及其對電機(jī)的影響作了分析,介紹了抑制微浪涌電壓的技術(shù),以及最近出現(xiàn)的衰減微浪涌電壓的產(chǎn)品和采用細(xì)線徑傳輸為特征的微浪涌抑制組件的工作原理等。

   1 微浪涌電壓的發(fā)生機(jī)理

  1.1 變頻器的輸出電壓波形

  變頻器主要由把交流市電整流成直流的整流器、平滑電壓脈動的電容器、6 個開關(guān)器件構(gòu)成的逆變器所組成。如圖1 所示,逆變器部分輸出由改變脈沖寬度(PWM 波)形成的等效正弦波交流電壓去驅(qū)動電機(jī)。近幾年的變頻器為了使電機(jī)低噪音化,逆變部分的開關(guān)器件采用IGBT進(jìn)行著高速開關(guān)動作。因此,在PWM 波的每個脈沖上升和下降時,即開關(guān)時間以非常短的時間駐t=0.1~0.3 滋s切換著的時候,使逆變器內(nèi)部的直流電壓Ed(400 V電力系統(tǒng)用逆變器的Ed=600 V左右)因切換所形成的電壓變化率dv/dt變得很大,這是產(chǎn)生微浪涌的主要根源之一。

  1.2 微浪涌電壓

  微浪涌電壓是變頻器和電機(jī)之間的接線長度很長時,在電機(jī)接線端產(chǎn)生的極細(xì)的尖峰浪涌電壓。如圖2所示,逆變器的輸出電壓是脈沖狀,在電機(jī)接線端子上發(fā)現(xiàn)在脈沖狀的波形上又疊加了微浪涌電壓尖峰。一般情況下,微浪涌電壓的尖峰值將會是逆變器內(nèi)部的直流電壓的2 倍。

  1.3 阻抗不匹配形成的反射

  變頻器的輸出脈沖上升或下降時間很短,是疊加在變頻器輸出給電機(jī)的驅(qū)動頻率(基波)及脈沖調(diào)制頻率(調(diào)制波)之外的高頻成分。一般情況下,變頻器與電機(jī)連接電纜的阻抗ZL是50~100 贅,而電機(jī)本身的阻抗ZM,一般數(shù)百kW的電機(jī)也都超過1 k贅,是電纜阻抗的10 倍以上。這樣,在電機(jī)的接線端子上將發(fā)生阻抗的不匹配現(xiàn)象,造成高頻波成分的反射。在不匹配阻抗連接處的反射系數(shù)M為

  

  變器的輸出脈沖同一極性、幾乎同一大小的反射波,疊加后成為微浪涌尖峰電壓。圖3 形象地表示了反射的情況,微浪涌電壓就像海浪遇到障礙一樣被抬得很高。圖4 表示實際電纜和電機(jī)的阻抗差別,一般電機(jī)的阻抗是電纜特性阻抗的10 倍以上,所以反射總是存在。

 

  

  

  

 

  1.4 微浪涌發(fā)生的實例

  某一變頻器和電機(jī)額定值都是AC 400 V輸入、功率3.7 kW,運(yùn)行電網(wǎng)電壓AC 460 V,輸電電纜長度50 m。空載條件下,測量出變頻器內(nèi)部直流中間電壓為620 V,用示波器看到的電機(jī)接線端子上的微浪涌波形如圖緣所示,圖中,微浪涌電壓值高達(dá)直流1 250 V,這對電機(jī)絕緣產(chǎn)生破壞并加速其老化。

 

  

 

  測量變頻器與電機(jī)間不同布線電纜長度時的微浪涌電壓如圖6 所示,這是在IGBT 調(diào)制頻率2 kHz,脈沖上升時間駐t=0.1 滋s 的常見條件下的測量值,可以看到電纜長度超過100 m后,微浪涌電壓保持在變頻器內(nèi)部直流電壓2 倍的水平不變。而電纜長度超過20 m就要重視微浪涌電壓可能已經(jīng)超過變頻器內(nèi)部直流電壓1.8 倍的情況。

 

  

 

  2 微浪涌電壓對電機(jī)的影響

 

  電機(jī)內(nèi)部的斷面如圖7 所示。電機(jī)有定子和轉(zhuǎn)子,定子內(nèi)有安放三相線圈的槽。如果放大槽的內(nèi)部,可以看到有許多的線圈(漆包線),各線圈對地之間、各相之間、線匝相互之間都有絕緣存在。通常對地、相間都有絕緣紙插入,而線匝之間沒有絕緣紙插入,它利用堅固的漆包線的漆層獲得絕緣。微浪涌電壓給這些絕緣全部帶來影響,這些絕緣損壞之中,線圈匝間損壞最多。表1 列出了有關(guān)電機(jī)內(nèi)部各絕緣部分承受的電壓值,也稱為電壓應(yīng)力,提供了用市電電源驅(qū)動電機(jī)和用變頻器驅(qū)動時相比較的資料。

 

  

  

 

  2.1 對線圈匝間的絕緣破壞

  浪涌電壓滲入電機(jī)內(nèi)部的時候,線圈匝間究竟加上多少電壓,模擬結(jié)果如圖8所示。該模擬是將測量點(diǎn)放在電機(jī)的每一線圈上(電機(jī)槽內(nèi)的漆包線圈上),在U-V之間加上上升時間0.14 滋s 的浪涌電壓的測量的結(jié)果。U-S1之間是第1 線圈分擔(dān)的電壓,測得它分擔(dān)了全電壓65豫耀75%,而別的線圈S1-S2、S2-S3、S3-V 之間分擔(dān)了10豫耀20%,這是因為電機(jī)內(nèi)部的阻抗大,微浪涌電壓在逐漸衰減。

  在電機(jī)的制造過程中,漆包線線圈的起頭到末尾完全分離不易做到,多數(shù)情況下是亂繞的,槽里邊線頭和線尾可能緊挨著。如果這樣就會發(fā)生線匝之間由于微浪涌電壓的電暈放電(局部放電)。那怕放電部分時間極其短促,局部也會達(dá)到10 000益,高溫使絕緣逐漸地侵蝕,過些時間之后絕緣就會被破壞。如圖9 所示為直徑0.85 mm、漆皮厚33 滋m、F 級絕緣、155益漆包線的壽命特性。

 

  

  

 

  壽命特性水平軸表示施加破壞脈沖次數(shù)和破壞時間;縱座標(biāo)軸表示破壞電壓,兩條曲線分別表示漆包線在溫度20益和155益兩種條件下測量的結(jié)果。

  壽命特性用斜率不同的兩條線表示,兩條線連接的地方叫做局部放電起始電壓。斜率陡險的部分,是確實發(fā)生了放電的區(qū)域,2 小時內(nèi)漆包線遭到破壞。斜率緩慢的區(qū)域極少發(fā)生局部放電。按照這一結(jié)論,如果控制住第1 線圈局部放電起始電壓,就不發(fā)生微浪涌電壓的絕緣破壞。另外,如果相間(U-V 之間)控制在1 000 V以下、上述的第1 線圈的電壓分擔(dān)率控制在750 V 左右,就能夠確保20 年的壽命。

  2.2 由于微浪涌所造成電機(jī)損壞的真實情況

  在日本,隨著變頻器的普及,電機(jī)廠家強(qiáng)化了電機(jī)的絕緣,多數(shù)把絕緣水平做到超過1 200 V以上。JEMA(日本電機(jī)工業(yè)會)的技術(shù)資料顯示在1989耀1993 年的5 年間,根據(jù)對電機(jī)發(fā)貨臺數(shù)統(tǒng)計的微浪涌的損壞事例在0.013% ,即非常低的概率。不過長期使用絕緣老化的舊電機(jī)和被認(rèn)為絕緣水平低的電機(jī),絕緣破壞的危險性還是較高。另外,根據(jù)近幾年的電源的高次諧波對策和對以升降機(jī)的回生能量為目標(biāo)的高功率因數(shù)電源推廣應(yīng)用,所設(shè)置PWM 變頻器系統(tǒng)不斷增加。PWM變頻器的回生能量為了送回市電電源,讓直流中間電壓上升到較高值是必要的關(guān)鍵,其結(jié)果是由于微浪涌電壓引發(fā)絕緣破壞的可能性正在增加。在中國和其它AC 440~380 V地區(qū),市電電壓是日本市電電壓的2倍,因此,微浪涌電壓的危害更加顯著。

 

  3 微浪涌的抑制技術(shù)

 

  鑒于上述原因,各變頻器廠商致力于克服微浪涌問題,開發(fā)和銷售各種各樣對微浪涌進(jìn)行抑制的產(chǎn)品。

  3.1 輸出電路用的濾波器

  輸出電路用濾波器由輸入輸出接線端子、電阻、電容器、電抗器所構(gòu)成,如圖10 所示,其中電抗器是非常重的部件。作為主要的指標(biāo),相間的微浪涌電壓為1 000 V以下,變頻器和電機(jī)之間的接線長度為400 m,產(chǎn)品的系列到達(dá)500 kW,防護(hù)等級為IP00。

  3.1.1 工作原理

  輸出濾波器的工作原理如圖11所示。微浪涌電壓是變頻器輸出脈沖上升時間出現(xiàn)的dv/dt 過大所引起,又由于阻抗不匹配被反射而發(fā)生。因此輸出電路使用濾波器,用于抑制dv/dt,也就是抑制了高頻成分因阻抗不匹配而造成的微浪涌。所以輸出濾波器是dv/dt抑制型濾器,這種濾波器在變頻器的調(diào)制頻率為15 kHz、接線長度為400 m時,能做出微浪涌電壓1 000 V以下的性能非常優(yōu)良的產(chǎn)品。不過,這種方式的濾波器為了讓逆變器的輸出電流通過電抗器,不得不做成大容量,造成濾波器的大型化、高價格化、大重量,有的達(dá)到50 kg以上,給用戶造成了實際負(fù)擔(dān)。

 

  

  

 

  3.1.2 抑制效果

  圖12 顯示了供電電源440 V,功率為3.7 kW的變頻器供電給電機(jī)(3.7 kW,400 V),在接線長度為100 m時、測量電機(jī)接線端子U-V 之間的微浪涌電壓的抑制效果。在沒有輸出濾波器的情況下,微浪涌電壓達(dá)到1 360 V,相當(dāng)于變頻器內(nèi)部直流電壓680V 的200%。有輸出濾波器的時候,頂峰值電壓是756 V、相當(dāng)于變頻器器內(nèi)部的直流電壓680 V的111%,它和沒有輸出濾波器的頂峰電壓差距有604 V,抑制效果達(dá)89%。

 

  

 

  3.2 浪涌抑制組件

  圖13 所示為浪涌抑制組件的外觀。和輸出濾波器相比,浪涌抑制組件是小型化的產(chǎn)品。其技術(shù)指標(biāo)為相間的微浪涌電壓1 000 V以下,防護(hù)等級為IP20。浪涌抑制組件是對變頻器的容量不需要選擇,而接線距離需要選擇的產(chǎn)品。另外,接線方法非常簡單,只需要把浪涌抑制組件的輸入電纜接到電機(jī)接線端子U、V、W上。

 

  

 

  3.2.1 工作原理

  浪涌抑制組件的工作原理如圖14 所示。浪涌抑制組件內(nèi)部卷繞的浪涌抑制線具有和電纜線的阻抗ZL相同的阻抗,因此接到電機(jī)的接線端子上降低了電機(jī)接線端子的阻抗,從而減少了阻抗不匹配時的反射波。通常高頻波成分在電纜線上的阻抗ZL是50耀100 贅,設(shè)計的浪涌抑制線的阻抗ZS是50~60歐。

 

  

 

  浪涌抑制線的斷面圖如圖14 所示。浪涌抑制線用直徑1.2 mm 的線做成,內(nèi)部的銅線外表進(jìn)行高電阻率材料電鍍,又用高介電常數(shù)材料作絕緣體覆蓋,外表是屏蔽保護(hù)的同軸電纜線。銅線和高電阻鍍層的芯線和屏蔽線間的分布電容,降低了高頻阻抗,因而吸收了浪涌。使用這種浪涌抑制線的產(chǎn)品,除浪涌抑制組件以外,還有浪涌抑制電纜,是在變頻器的主電流通過的電纜線內(nèi)部平行安置了浪涌抑制線,它的截面圖和連接方法如圖15 所示。

 

  

 

  3.2.2 浪涌抑制組件的特點(diǎn)

  只需接到電機(jī)接線端子,即可大幅度減低浪涌電壓;

  在使用PWM變頻器的時候,相間電壓可控制到1 000 V以下;

  不需要追加施工,對已經(jīng)安裝運(yùn)行的設(shè)備,設(shè)置容易;

  與變頻器容量沒有關(guān)系,都可適用(但是,超過75 kW 的電機(jī)需對應(yīng)設(shè)置);

  需配合變頻器和電機(jī)之間的接線電纜長度,規(guī)格有50 m和100 m兩種;

  適應(yīng)于RoHS 指令;

  與輸出濾波器相比,小型化、輕量化。

  3.2.3 從傳輸線理論得出的浪涌抑制原理

  根據(jù)傳輸線理論,浪涌抑制使用了浪涌吸收、浪涌減衰、浪涌抑制線的反射降低的方法。

  員)浪涌吸收浪涌是高頻波成分,低阻抗的浪涌抑制線接在電機(jī)接線端子上,讓浪涌電流流到抑制線里面去,如圖16所示。

 

  

 

  浪涌減衰浪涌電流是高頻波成分,根據(jù)集膚效應(yīng),浪涌電流集中在導(dǎo)線外表面,因?qū)Ь€外表鍍高電阻率材料鍍層,故浪涌電流的能量在電阻上被消耗了,如圖17 所示。

  浪涌抑制線的反射降低浪涌電流的高頻分量在浪涌抑制線內(nèi)被旁路和衰減,使浪涌形狀變鈍,浪涌頻帶中心向低頻方向移動。又從浪涌電流來看,好像浪涌抑制線的特性阻抗逐漸變高了,使得抑制線末端不易被反射回來。如圖18所示。

 

  

 

  3.2.4 抑制效果

  圖19 是變頻器的電源電壓為400 V,3.7 kW的電機(jī)、接線長度50 m,和75 kW的電機(jī)、接線長度100 m時抑制微浪涌電壓的效果。對于3.7 kW的電機(jī),當(dāng)沒有浪涌抑制組件時,微浪涌電壓為1 036 V,相當(dāng)于變頻器內(nèi)部的直流電壓540 V的192%;當(dāng)加了浪涌抑制組件時,50 m電纜的峰值電壓為733 V,相當(dāng)于變頻器內(nèi)部的直流電壓540 V的136%。電壓尖峰差距303 V,有61%的抑制效果。對于75 kW的電機(jī),當(dāng)沒有浪涌抑制組件時,微浪涌電壓為1 040 V,相當(dāng)于變頻器內(nèi)部直流電壓520 V的200%;當(dāng)加了浪涌抑制組件時,電纜的峰值電壓為785 V,相當(dāng)于變頻器內(nèi)部直流電壓520 V得151%。電壓尖峰差距255 V,有49%的抑制效果。

 

  

 

  4 結(jié)語

 

  針對實際應(yīng)用變頻器時,產(chǎn)生的微浪涌現(xiàn)象對電機(jī)的危害,介紹了微浪涌抑制技術(shù)及其原理,以實例對比了不同抑制器的抑制效果,以期引起變頻器生產(chǎn)廠家和用戶對這一問題的關(guān)注。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

9月2日消息,不造車的華為或?qū)⒋呱龈蟮莫?dú)角獸公司,隨著阿維塔和賽力斯的入局,華為引望愈發(fā)顯得引人矚目。

關(guān)鍵字: 阿維塔 塞力斯 華為

加利福尼亞州圣克拉拉縣2024年8月30日 /美通社/ -- 數(shù)字化轉(zhuǎn)型技術(shù)解決方案公司Trianz今天宣布,該公司與Amazon Web Services (AWS)簽訂了...

關(guān)鍵字: AWS AN BSP 數(shù)字化

倫敦2024年8月29日 /美通社/ -- 英國汽車技術(shù)公司SODA.Auto推出其旗艦產(chǎn)品SODA V,這是全球首款涵蓋汽車工程師從創(chuàng)意到認(rèn)證的所有需求的工具,可用于創(chuàng)建軟件定義汽車。 SODA V工具的開發(fā)耗時1.5...

關(guān)鍵字: 汽車 人工智能 智能驅(qū)動 BSP

北京2024年8月28日 /美通社/ -- 越來越多用戶希望企業(yè)業(yè)務(wù)能7×24不間斷運(yùn)行,同時企業(yè)卻面臨越來越多業(yè)務(wù)中斷的風(fēng)險,如企業(yè)系統(tǒng)復(fù)雜性的增加,頻繁的功能更新和發(fā)布等。如何確保業(yè)務(wù)連續(xù)性,提升韌性,成...

關(guān)鍵字: 亞馬遜 解密 控制平面 BSP

8月30日消息,據(jù)媒體報道,騰訊和網(wǎng)易近期正在縮減他們對日本游戲市場的投資。

關(guān)鍵字: 騰訊 編碼器 CPU

8月28日消息,今天上午,2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會開幕式在貴陽舉行,華為董事、質(zhì)量流程IT總裁陶景文發(fā)表了演講。

關(guān)鍵字: 華為 12nm EDA 半導(dǎo)體

8月28日消息,在2024中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會上,華為常務(wù)董事、華為云CEO張平安發(fā)表演講稱,數(shù)字世界的話語權(quán)最終是由生態(tài)的繁榮決定的。

關(guān)鍵字: 華為 12nm 手機(jī) 衛(wèi)星通信

要點(diǎn): 有效應(yīng)對環(huán)境變化,經(jīng)營業(yè)績穩(wěn)中有升 落實提質(zhì)增效舉措,毛利潤率延續(xù)升勢 戰(zhàn)略布局成效顯著,戰(zhàn)新業(yè)務(wù)引領(lǐng)增長 以科技創(chuàng)新為引領(lǐng),提升企業(yè)核心競爭力 堅持高質(zhì)量發(fā)展策略,塑強(qiáng)核心競爭優(yōu)勢...

關(guān)鍵字: 通信 BSP 電信運(yùn)營商 數(shù)字經(jīng)濟(jì)

北京2024年8月27日 /美通社/ -- 8月21日,由中央廣播電視總臺與中國電影電視技術(shù)學(xué)會聯(lián)合牽頭組建的NVI技術(shù)創(chuàng)新聯(lián)盟在BIRTV2024超高清全產(chǎn)業(yè)鏈發(fā)展研討會上宣布正式成立。 活動現(xiàn)場 NVI技術(shù)創(chuàng)新聯(lián)...

關(guān)鍵字: VI 傳輸協(xié)議 音頻 BSP

北京2024年8月27日 /美通社/ -- 在8月23日舉辦的2024年長三角生態(tài)綠色一體化發(fā)展示范區(qū)聯(lián)合招商會上,軟通動力信息技術(shù)(集團(tuán))股份有限公司(以下簡稱"軟通動力")與長三角投資(上海)有限...

關(guān)鍵字: BSP 信息技術(shù)
關(guān)閉
關(guān)閉